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Main characteristic of (big) data
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A world of interrelated information

Fraud detection
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https://neo4j.com/whitepapers/top-ten-use-cases-graph-database-tech nology/
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A world of interrelated information

Real-time recommendation
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: . Retailing
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https://neo4j.com/whitepapers/top-ten-use-cases-graph-database-tech nology/
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A world of interrelated information

Anti-money laundering

Company with Trading Partner in Customer Associated
Unknown Owners High-Risk Geography with High-Risk Entity

@ ® @

Creditor
@ in High-Risk

Geography

Companies Trading Partner

«@»
Customer
Creditor

https://neo4j.com/whitepapers/top-ten-use—cases—graph—database—technology/
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Modeling data connectedness

e A social network

e Persons, friendships,
photos, locations, apps,
pages, ads, interests,
age range, etc.

friend
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Problems & Questions

How do we deal with these data?

Is traditional DB technology enough?
We must address:

* Connectedness
 Unstructured data
 High Volumes
 Real-time

NoSQL technologies
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Types of NoSQL databases

Document
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A history of database models (A. Mendelzon)

Year
: Mathematical Graph Theory
: Logic
_ Knowledge
_ Representation
—
1970 —
=
— (7 Logic
— \Programming . .
—_ Object Oriented
— Programin
— e
1980 —
— ect Ori
— Statistical \| Object Oriented |
_ Databases
1990 —
_ | Multidimensional |
— Semistructured |
— | O Theoretical Basis \
— | [__] Database Model XML
2000 — | __» Influence

7/2/24 EBISS - 2024 - Padova - Italy 13



7/2/24

The Golden age of GDB Models

........

- ......................................................................................... Kuper and Vardi 1984

......................... generalize the relational,

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA hierarchical and network

models

1988
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1990
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Graph database models*

 Database model: three components: a set of data structure types, a set of
operators or inference rules, and a set of integrity rules (Codd, 1980)

» Data and/or the schema represented by graphs, hypergraphs, hypernodes
Node -> entity, edge -> relationship between entities, property -> feature

* Data manipulation expressed by graph transformations, or operations on
graph features: paths, neighborhoods, subgraphs, patterns, connectivity, graph
statistics (e.g., diameter, centrality, etc.)

* Integrity constraints enforce data consistency, schema-instance consistency,
identity & referential integrity, functional dependencies. E.g.: labels w/ unique
names, constraints on nodes, domain and range of properties

* C. Gutiérrez, R. Angles. A Survey on Graph Database Models ACM Computing Surveys, 2008
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Knowledge graphs*®

 Many (sometimes conflicting) definitions, technical and general

 Knowledge graph: a graph of data (or data graph) intended to accumulate and
convey knowledge of the real world, whose nodes represent entities of
interest and whose edges represent relations between these entities

 The graph of data conforms to a graph-based data model (e.g., a directed
edge-labelled graph, a property graph, etc)

* Knowledge: something that is known, which may be accumulated from
external sources, or extracted from the KG itself

* Hogan et al. Knowledge Graphs, ArXiv:2003.02320v6, 2021.
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Two graph data models

RDF Knowledge

Linked Data Graph = Life Sciences
Knowledge » Data Federation . Heal_th C_Dare
Graph * Knowledge B P}Jbllshlng
Representation * Finance
* Metadata Management
Property Graph Yt o # = Financial
Graph « Path Analytics L 3 % 'ﬁ f’ = Retail, Marketing
Analytics » Social Network Analysis g t ,, -~y = Social Media
- Entity Analytics ‘!‘f = Smart Manufacturing
Use Case Graph Model Industry Domain

* Perry, M. Introduction to RDF Graph for Oracle Database 19c. Architecture and Overview (2019)
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RDF graph data model
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Originally deviced to
represent metadata
Represents resources and
relations between
resources

An RDF graph: a collection
of (subject, predicate,
object) triples

Schema and instances
represented using the
same formalism
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RDF Knowledge Graphs

Providers Datasets Integrated Data
Access and Insightful

Knowledge Graph Analysis Services

"i;xg%
m - [ — & - Qes

ﬁj o % / e SPARQL

uw

* Papadaki et al. A Brief Survey of Methods for Analytics over RDF Knowledge Graphs, 2023
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The property graph data model*

Entry, InProceedings
title="GraphLog: a
Visual Formalism ..."”
numpages="13"
keyword="Datalog”

pages="404-416"

Proceedings
title="PODS”
year="1990"
month="April”

booktitle
fname="Mariano”

Iname="Consens”

fname="Alberto”
Iname="Mendelzon”

Entry, Article

title="Finding regular
simple paths ...”

Journal

title="SIAM J. Comput.”
year=“1995"

numpages="24"

« . 2 gy 4
keyword="recursive queries vol="24
keyword="paths” num="6

fname="Peter”

blished ]
Iname=Wood” published_in

Informally, a directed labelled multigraph where each node or edge

associated with a set (possibly empty) of property-value pairs

* A node represents an entity, an edge represents a relationship between
entities, a property represents a specific feature of an entity or relationship

* R. Angles. The Property Graph Database Model. AMW 2018, Cali, Colombia
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The property graph data model*

Entry, InProceedings
title="GraphLog: a
Visual Formalism ...”
numpages="13"
keyword="Datalog”

order="1" pages="404-416"

fname="Mariano”
Iname="Consens”

Proceedings
title="PODS”
year="1990"
month=“April”

has_author booktitle

ord

has_author

Author

cites

fname="Alberto”
Iname="Mendelzon”

Entry, Article

title="Finding regular
simple paths ...”

Journal

title="SIAM J. Comput.”

numpages="24" y‘ear="19?5"
keyword="recursive queries” \'0]="24"
keyword="paths”

has_author

order="1"

Author

fname="Peter”
Iname=“Wood”

has_author published_in

order="2

pages="1235-1258"

* First formal definition (Angles, 2018)

1. N is a finite set of nodes (also called vertices);

2. E is a finite set of edges such that E has no elements in common with N;

3. p: E— (N x N) is a total function that associates each edge in E with a
pair of nodes in N (i.e., p is the usual incidence function in graph theory);

4. X: (NUE) = SET" (L) is a partial function that associates a node/edge
with a set of labels from L (i.e., X is a labeling function for nodes and edges);

5. 0 : (NUE)x P — SET™" (V) is a partial function that associates nodes/edges
with properties, and for each property it assigns a set of values from V.

7/2/24 EBISS - 2024 - Padova - Italy



Schema

7/2/24

The property graph data model*

title : String
numpages - Integer
keyword = String

- R title : String
InProceedings booktitle > year : Integer
month : String

Journal

cites

has_author

.
Article - -
published_in

title : String
year : Integer
vol : Integer
num : Integer

Author

pages : String

fname : String
Iname : String

1.
2.

3.

4.

Tn C L is a finite set of labels representing node types;

Tg C L is a finite set of labels representing edge types, satisfying that Tg
and Ty are disjoint;

B:(TnUTg) x P— T is a partial function that defines the properties for
node and edge types, and the datatypes of the corresponding values;

§ : (Ty,Tn) — SETH(TEg) is a partial function that defines the edge types
allowed between a given pair of node types.

EBISS - 2024 - Padova - Italy
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Using both models for analytics (example)

Advanced
Analytics

---- Relational
Table/View

Oracle CREATE

Database
Property
Gateways Graph View of

RDF
Extenal L | | |
Table /
DB Link

* Perry, M. Introduction to RDF Graph for Oracle Database 19c. Architecture and Overview (2019)

Oracle Big
Data
Connectors

ORACLE
DATABASE

Property
Graph View

SEM_MATCH

42 Copyright © 2019, Oracle and/or its affiliates. All rights reserved.
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Graph query languages™

- Create, Read, Update, Delete

Academia - - Complex path expressions
GXPath ' - Configurable match semantics

- Construct & project graphs

- Composable (views, omnigraphs)

Academia - Catalog

RPQs - Schema
(Regular

Path Oracle

Queries) -

Reading graphs ==

Complex path expressions

- Construct & project graphs ’
- Composable ¥ 0 peeeccsecsseciand Lo

Neodj

Cypher

Construct & project
Composable
Views/omnigraph

Named graphs
Catalog

Schema
Views/omingraph

- Create, Read, Update, Delete (CRUD) ‘ '

Academia
STRUQL

I

! 1

]

Named graphs

- Create, Read { ¥ Complex path expressions ‘
- Advanced complex path expressions N

&

- Construct & project graphs ~

: - Composable Tigel'gl'aph
Academia

Regular gg:\ns;xg; b&b project graphs G SQL
Queries —

+ https://www.gqlstandards.org/what-is-a-qql-standard
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https://www.gqlstandards.org/what-is-a-gql-standard

YachtClub

name: Ankh-Morpork
Yacht Club
address: Cable Street

cl

owner: Jay
owner: Aretha

isBlocked: fal
isBlocked: false isblocke ase
name: Jay

A\

: Transfer

1
1

Account, Person

owner: Mike

YachtClub

name: Emerald City
isBlocked: true ‘ Yacht Club

isBlocked: fal

S0tk °=° name: Mike address: Yellow Brick Rd

owner: Scott P2

c2

Social

USE Fraud

MATCH (x) -[z:Transfer WHERE z.amount>1000000]-> (y WHERE y.isBlocked=true)
RETURN x.owner AS sender, y.owner AS recipient

* Francis et al.. A Researcher's Digest of GQL, ICDT 2023
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Temporal Databases

* Represent and manage time-varying information
e Several ways to interpret the time frame
* Valid time (VT): Time when a record is valid in the real world
 E.g., captures when a salary was paid to an employee
e Supplied by the user
* Transaction time (TT): Time when a fact is stored in the DB
* Begins at the time when a record is inserted or updated, and ends
when the record is deleted or updated
* Generated by the database system
e Bitemporal time (BT): Valid and transaction times combined
* Lifespan (LS): Time when an object or relationship exists,
 e.g., duration of a project
e Granularity represents the minimal division of the timeline

7/2/24 EBISS - 2024 - Padova - Italy 27



Temporal Databases

 DBMSs provide limited support for dealing with time-varying data
 Many of them only provide data types for encoding dates or timestamps
e SQL standard: temporal support, partially implemented in most DBMSs
* SQL must be used for querying time-varying data, not an easy task
 Example: a temporal database:

Employee Salary
| SSN | FirstName |LastName| BirthDate | Address | | SSN | Amount | FromDate | ToDate |

Affiliation WorksOn
ISSN | DNumber I FromDate I ToDatel | SSN I PNumber I FromDate | ToDatel

Controls
| DNumber | PNumber | FromDate | ToDate |

*  FromDate and ToDate: Indicate when the information in a row
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Operations in Temporal Databases

SSN DNumber FromDate ToDate
123456789 D1 2002-01-01 2003-06-01
123456789 D2 2003-06-01 9999-12-31
333444555 D2 2003-10-01 | 2004-01-01
333444555 D3 2004-01-01 9999-12-31

* Given the table Affiliation obtain the periods of time when an employee has
worked for the company, independently of the department
 Thisis called a temporal projection
* Not easy to express in SQL
* Note: first and last two rows are value equivalent, equal on all their
columns except for FromDate and ToDate
* Result must be coalesced: combining several value-equivalent rows into
one provided that their time periods overlap

7/2/24 EBISS - 2024 - Padova - Italy 29



Operations in Temporal Databases

Given the table Affiliation obtain the periods of time when an employee has
worked for the company, independently of the department

Non coalesced result

SSN FromDate ToDate
123456789 | 2002-01-01 | 2003-06-01
123456789 | 2003-06-01 | 9999-12-31
333444555 | 2003-10-01 | 2004-01-01
333444555 | 2004-01-01 | 9999-12-31

 Coalesced result

SSN FromDate ToDate
123456789 | 2002-01-01 9999-12-31
333444555 | 2003-10-01 | 9999-12-31

* Coalescing is an expensive operation, requires expert SQL knowledge

7/2/24
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Temporal Graph Databases

e Typically, graphs assumed to be static (non-temporal)
 Changes may occur in a property graph as the world they represent evolves
across time

1. Phone call network. Each vertex can represent a person (or a phone #), an
edge (u, v, t, d) tells that u called v at time t, with duration d; new nodes and
edges are added frequently, and the properties of u or v may change over
time

2. Social networks. Each vertex models a person, organization, etc.; an edge
(u, v, t, d) represents a relationship between u and v (e.g., u follows v, u is a
friend of v) at time t which lasts d

Calls Follows
Peter Mary Peter Mary
Start = 1.12.2024 14:35 Start =2021 d =3 years

d = 2 minutes
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Temporal Graph Databases

3. Transportation networks. Each vertex represents a location, an edge (u, v, t,
d) aroad segment from u to v, existing since time t, and whose interval of
existence is d

4. Travel schedules. Each vertex in a graph represents a location, and an edge
(u, v, t, d)is atrip (flight, bus, etc.) from u to v departing at time t, whose
duration is d

Temporal graph literature is limited

* Addresses mostly cases 1 (without changes in properties) and 4

e Cases 2 and 3 require an approach over PGs along the lines of the temporal
database theory

 We study how temporal databases concepts can be applied to graph
databases, to model, store, and query temporal graphs
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A Graph Database
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A (Simplified) Temporal Graph Database
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Temporal graph data models

* We classify data models in the literature of temporal graphs as:

7/2/24

* Duration-labeled temporal graphs (DLTG)

* Interval-labeled temporal graphs (ILTG)

* Snapshot-based temporal graphs (SBTG)

[3.4]

EBISS - 2024 - Padova - Italy

D, S
\

[5.6]

[10,11]

[6,7]
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Temporal graph data models

* We classify data models in the literature of temporal graphs as:
e Duration-labeled temporal graphs (DLTG)

e Studied by Wu et al. *

* A node represented as a string (nodes not
annotated with properties), and the edges
labeled with a value representing the
duration of the relationship (in the figure,
durationA =1

e Eachedgee=(u,v,t,A) represents a
relationship from a vertex u to another
vertex v starting at time t with a duration A

* Wu et al. Path problems in temporal graphs. Proic. VLDB, 2014,
Hangzhou, China. http://www.vldb.org/pvldb/vol7/p721-wu.
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Temporal graph data models

* We classify data models in the literature of temporal graphs as:
e Duration-labeled temporal graphs (DLTG)

Four different forms of 'shortest' paths
called minimum temporal paths:
Earliest-arrival path path: earliest arrival
time from a source x to a targety
Latest-departure path: latest departure
time starting from x in order to reach y at
a given time

Fastest path: goes from x toy in the
minimum elapsed time

Shortest path: shortest from x to y in terms
of number of hops

* Wu et al. Path problems in temporal graphs. Proic. VLDB, 2014,
Hangzhou, China. http://www.vldb.org/pvldb/vol7/p721-wu.
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Temporal graph data models

* We classify data models in the literature of temporal graphs as:
* Interval-labeled temporal graphs (ILTG): A temporal label is defined over
the database objects

* Label over database objects
e Studied in Campos et al.*
[10,11] * Defined as a graph where each edge e = (u,
v, I) represents a relationship from a vertex
u to another vertex v, valid during a closed-
open interval I=[t_s,t_e)
 Also nodes and properties are annotated
with their validity intervals

[3.4]
[5.6]
[6,7]

[2,3] [6,7]

* Campos, A. et al Towards temporal graph databases. Proceedings of the AMW 2016, Panama City, Panama.
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Temporal graph data models

* We classify data models in the literature of temporal graphs as:
* Snapshot temporal graphs*: defined as a sequence of snapshots

* A temporal graph G[ti, tj ] in a time interval
[ti, tj ], is a sequence {Gt;, Gt;,y, ..., Gt; }
of graph snapshots

* K. Semertzidis and E. Pitoura, “Top-k durable graph pattern queries on temporal graphs,” IEEE Trans. Knowl. Data Eng.,
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Temporal graph data models

e Other work:

* Byun et al. ChronoGraph: Enabling temporal graph traversals for efficient
information difusion analysis over time. IEEE Trans. Knowl. Data Eng.,
32(3):424--437, 2020. https://doi.org/10.1109/TKDE.2019.2891565

* Byun, J. (2022). Enabling time-centric computation for efficient temporal

graph traversals from multiple sources. IEEE Trans. Knowl. Data Eng.,

34 (4), 1751-1762. https://doi.org/10.1109/TKDE.2020.3005672

C. Cattuto, A. Panisson, and M. Quaggiotto, “Representing time dependent

graphs in Neo4j.” https://github.com/SocioPatterns/neo4j-dynagraph/wiki/

Representing-time-dependent-graphs-in-Neo4j, 2013.

T. Johnson, Y. Kanza, L. V. S. Lakshmanan, and V. Shkapenyuk, “Nepal: a path

guery language for communication networks,” NDA@SIGMOD 2016
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An abstract model for temporal networks

Livedin [1990-2016) > City
Name: Brussels «———Livedin [1978-2003)
Person [1990-Now) g
Friend [2011-2013)[2015-2020)[2021-Now,
Name: {Kea Sanders: [1990-2014), [ i i ) 1
Kea Sanders-Upcott: [2014-Now)} L—Fan [2005-2008)———— Person [1978-Now)
Occupation: {Engineer: [2013-Now)} —Fan [2020-Now)—> Brand Name: {Wei Xu: [1978-Now)}
| - Occupation: {Doctor: [1996-Now)}
Livedin [2016-Now) Name: Samsung | |
-
- » 8
City Fan [2005-2008) & 9
=3
Name: Buenos Aires ‘ Livedin [2003-Now) & §
N =
Person [1997-Now) [«—Friend [2020-Now) g £
D ©
Livedin [1995-Now) Name: {Sandra Perez: [1997-Now)} N Q
Friend [2020-Now) | gccupation: {Architech: [2020-Now)} City T
~
. ’ Name: Mumba Q
Person [1995-Now) Livedin [1997-Now)  Fan [2019-2023) 4 >
Name: {Luca Mori: [1995-Now)} l i T 8
Occupation: {PHD Student : [2020-Now H . &
p { [ )} City Brand « Fan [2020-Now) Livedin [2001-Now) =
Name: New York Name: LG §
Friend [2015-2018) t 2
| Livedin [1960-Now) g
4 I
Person [1960-Now) P
erson 1980-Now,
Name: {Peter Norton: [1960-Now)} l«——rFriend [2014-2016),[2017-2018)[2021-2022) Narme- {av Bedi- 1980_,[V )
Occupation: {teacher: [1985-2010), ame: {_ay edi: _[ ow)}
author: [2010-Now) Occupation: {Dentist: [2004-Now)}

7/2/24 EBISS - 2024 - Padova - Italy

46



An abstract model for a temporal networks

* Data structure

* Adirected property graph G(N, E) N, E, nodes and directed edges

* Nodes are labeled with the type of entity they represent

* Interval represents lifespan

e Attributes: static and temporal

 Names of the relationships are associated with a set of intervals

* A special value Now is used to tell that the node is valid at the current time

e Also a set of constraints
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An abstract model for a temporal networks

* Constraints

» All edges with the same label (i.e, representing the same relationship
type), between the same pair of nodes, are coalesced

* The intersection of the nodes’ intervals must include their edge intervals

* A node’s interval includes the union of the intervals of a temporal attribute

* Intervals are time-ordered, maximal, and non-overlapping
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Querying the abstract model

* Query 1 List the friends of Wei Xu. Non temporal. Answer: Jay Bedi, Sandra
Perez, the persons directly connected to Wei via a Friend relation

* Query 2 Who where the friends of Wei Xu in 2021? Answer: Sandra Perez, Jay

* Query 3 Where did the people who where friends of Kea between 2011 and
2013 live at that time? Only the relationship with Wei is valid in [2011-2013).
Answer: Mumbai

* Query 4 Who were friends of Kea while she was living in Buenos Aires? Kea has
been living in Buenos Aires since 2016, thus, any person that was a friend of
Kea at any instant of the interval in [2016-Now). Answer: Wei and Peter

* Query 5 Where did Jay live when he and Sandra followed the same brands? Jay
in [2020, Now) and Sandra in [2019,2023) followed LG. Intersection: [2020-

2023). Answer: Mumbai
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Querying the abstract model it of Wl

Xuin 2021
Livedin [1990-2016) ———  >{City <
Name: Brussels «——Livedin [1978-2003)
Person [1990-Now) g
Friend [2011-2013)[2015-2020)[2021-Now
Name: {Kea Sanders: [1990-2014), [ i i ) 1
Kea Sanders-Upcott: [2014-Now)} l—Fan [2005-2008)——— Person [1978-Now)
Occupation: {Engineer: [2013-Now)} —Fan [2020-Now)—> Brand Name: {Wei Xu: [1978-Now)}
- Occupation: {Doctor: [1996-Now)}
Livedin [2016-Now) Name: Samsung | 1
-
- - 8
City Fan [2005-2008) 2 9
3
Name: Buenos Aires ‘ Livedin [2003-Now) 2 &
N =
Person [1997-Now) [¢—Friend [2020-Now) g <
: ]
Livedin [1995-Now) i Name: {Sandra Perez: [1997-Now)} N Q
| Friend [2020-Now) | occypation: {Architech: [2020-Now)} City a5 T
~
- . ‘ Name: Mumba =
Person [1995-Now) Livedin [1997-Now)  Fan [2019-2023) y 2
Name: {Luca Mori: [1995-Now)} N
Occupation: {PHD Student : [2020-Now/ H . &
p { [ )} City Brand | ran [2020-Now)— livedin [2001-Now) =
T Name: New York Name: LG §
Friend [2015-2018) =
Livedin [1960-Now) g
v | I
Person [1960-Now) B
erson 1980-Now,
Name: {Peter Norton: [1960-Now)} \«——Friend [2014-2016),[2017-2018)[2021-2022) Name: Uay Bedi: [1980-I[V Y )
Occupation: {teacher: [1985-2010), ame: _ay edi: i ow)
author: [2010-Now) Occupation: {Dentist: [2004-Now)}
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Querying the abstract model

Query 3:
Where did the
. y _ G B
peop/e who Livedin [1990-2016) City
. N :B | le—Li -
where frlends ame: Brussels Livedin [1978-2003)
of Kea Person [1990-Now) ;
Fri 2011-2013)[2015-2020)[2021-N
between 2011 Name: {Kea Sanders: [1990-2014), iend [ J I il )
. Kea Sanders-U tt: [2014-N, hFan 2005-2008)—— L
and 2013 live? Occu atizrar {?E: tier:Zer'p[CZOOI?a[-Now)} ol : ) Ferson L
P S1Eng - ——Fan [2020-Now)—> Brand Name: {Wei Xu: [1978-Now)}
- Occupation: {Doctor: [1996-Now)}
Livedin [2016-Now) Name: Samsung | 1
-
. T n 8
City Fan [2005-2008) 5 9
>
Name: Buenos Aires Livedin [2003-Now) & §
N S—
T Person [1997-Now) [¢—Friend [2020-Now) E <
Livedin [1995-Now) . Name: {Sandra Perez: [1997-Now)} 'g §
Friend [2020-Now) | gccypation: {Architech: [2020-Now)} City 5 F
- . Name: Mumba (=]
Person R Livedin [1997-Now) Fan [2019-2023) 4 ;
Name: {Luca Mori: [1995-Now)} 8
: . - - . o
Occupation: {PHD Student : [2020-Now)} Clty Brand Fan [2020-Now) Livedin [2001-Now) %
Name: New York Name: LG g
Friend [2015-2018) 2
| Livedin [1960-Now) g
v | 1’
Person [1960-Now)
Person [1980-Now)

7/2/24

Name: {Peter Norton: [1960-Now)}
Occupation: {teacher: [1985-2010),
author: [2010-Now)

—Friend [2014-2016),[2017-2018)[2021-2022)
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Name: {Jay Bedi: [1980-Now)}
Occupation: {Dentist: [2004-Now)}




Temporal paths

(friend,[1,9]) (friend,[2,7]) (friend,[2,7])

(friend,[2,8]) @

(friend,[6,12)) (friend,[12, 18])

(friend,[1,10]) @
(friend,[lO, NOW]) (friend,[ZO, NOW])
friend,[4,7]) @ |

“When have Kea, Wei, Jay, Peter and Luca been friends simultaneously?”:
Captured by the notion of continuous path*

(friend,[2,3))

Left: two Continuous paths: (n1, n2, n3, n4; friend; [2, 3]); (n1, n5, n4; friend;
[41 7]) ( | = In1 N In2 n..n Ink)

Center: a Pairwise Continuous path (overlapping intervals in the path)

Right: a Consecutive path (disjoint consecutive intervals)

* Rizzolo, F. and Vaisman, A., “Temporal XML: Modeling, indexing, and query processing,” VLDB Journal, 2008
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Temporal paths

(friend,[1,9]) (friend,[2,7])

(friend,[2,8])

(friend,[2,3]) (friend,[6,12])

(friend,[1,10])

(friend,[10, Now])

@~E——F

Questions
* Why did we come up with these paths?

* Are there any other interesting paths? How many?
e Can we characterize temporal paths in some way?
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(friend,[2,7])

(friend,[12, 18])

(friend,[20, Now])
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Temporal paths

 Let G(N, E) be a TNG. Let (N, r) € G(N, E) be a graph where N, is a finite set of
nodes, ris a relationship (labeledr ), r € N x N.

* Letebeanedgein(N,r), aninterval /for e is maximal when for any interval
I’, we have that | S/ => | =/

* Maximal intervals for the Friend relationship

A
D,
Peter —» Luca - o
Cl Cz C3
Jay — Peter A 9 d =35
. B1 B> B3
Wel - Jay - 0 o
. A A, As
] ] T T ] T T ] ] T T ] T T >

O = N M < 1N O N 0 O O H N M =2
i — (| (o i i (| i — — N (@] (@] N (@)
o o o o (@] o (@) (@] (@) (@) o o o o =
N N N N N N N N N N N N N N
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Temporal path definition

* (N, r) atemporal network and o¢ a binary relation on temporal intervals.
 Atemporal opathin (N, r)is a structure (y, I), where

1. yisapathin(N,r);
2. lis asequence of intervals |, ..., |,_;;
3. l;is a maximal interval for every e (n;, n;,4)
4. (I, I;,;) holds between every pair of consecutive intervals
e Replacing condition (3) by:
3. l;is an interval (not necessarily maximal) for e;(n;, n;,;), forj=1, .., k- 1;

We have a temporal sub-o-path in (N, r)

* Where does this « come from?
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Allen’s Algebra

* In 1983, James F. Allen described the possible relationships between two
intervals on the real line (the timeline)

 Let Aand B be such intervals. We denote their start and end points by
s(A), s(B), e(A) and e(B), respectively

* So, we have A=[s(A),e(A)) and B=[s(B),e(B))

 The 13 possible arrangements of A and B, as given by Allen:

B

al ——
Q2
a3

Qs
(873

ag

A
fo e —

Q10
11

Q12
13
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Allen’s Algebra

 We write ai(A,B), fori=1, ..., 13, whenever the intervals A and B are in
the relationships as depicted. We call al, ..., al3 the base relations of
the Allen interval algebra.
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Allen’s Algebra

* Based on these thirteen base relations a,, . . ., a3, Allen defined an
interval algebra which we denote A

 The base relations al, ..., al3 are exhaustive and pairwise disjoint, i.e.,
for any two given intervals, exactly one of the thirteen relations holds

* Also, the complement (or negation) of one of the a; corresponds to the
union (or disjunction) of the twelve remaining a; (j <> i)

* Forexample la;-a,U a;... U ay;
* Wedenotea,; Ua,UozUay,U as(A, B), asa;ss5(A, B)or o4,345(A, B)
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Allen’s Algebra

* The algebra A includes the operations inverse (denoted . 1), intersection
(denoted N) and composition (denoted °) :

e Inverse: a1 (A, B) if and only if a(B, A);

e Intersection: a N B (A, B) if and only if a(A, B) and B(A, B); and

e Composition: a° B (A, C) if and only if there exists an interval B such that

a (A,B) and B(B, C)
A a12(AB) ° ay; (BC) = ay3 (A C)
B (04, not transitive)
C

* Theinverse relation, a1, in our notation, verifies that
O(i_lz o Fy/ fori= 1, 2, . sy 13

https://ics.uci.edu/~alspaugh/cls/shr/allen.html
Krokhin, A, Jeavons, P. & Jonsson, P. (2003) : Reasoning about temporal relations : the maximal tractable
subalgebras of Allen’s interval algebra., Journal of the ACM., 50 (5). pp. 591-640.
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7/2/24

Allen’s Algebra

Any element of the Allen algebra A can be written as a

as union of its base relations

Since compositions and negations can be written as unions and
intersections, they can be expressed using negation and union

Given that there are the thirteen base relations ay, . . ., a;3, 213=8192
unions are possible, and this is in fact the cardinality of A

Question: Are all of combinations useful? How can we prune this set?
We will study (later) this over a real-world use case
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Allen’s algebra-based a-paths

A
D,
Peter — Luca - 0
¢ Cs Cs
Jay — Peter o 3 =35
. B, B, B3

Wei - Jay - 0 o
. A]_ Az A3

Kea » Wei{ = 0 time

T T T T T T T T T T T T T >

O 0 N M & IN O N 0 O O H N M =2
— — — — — — — — — — N N N N o
o o o o o o o o o o o o o o Z
N N N N N N N N N N N N N N

* v (A, B,, C,)isan as-path because as(A,, B,) and o4(B,, C,) hold

* vy (A B;, C)isana,; U a,-path because o(A;, B;) and a,(B;, C,)

hold => an a, ;-path

7/2/24
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Allen’s algebra-based a-paths

A
D,
Peter — Luca - B —
¢ Cs
Jay — Peter o 3 =35
. Bl B3

Wei - Jay - 0 o
. A A; Az

Kea » Wei{ 0 time

T T T T T T 1 [] T T T T T T >

O 0 N M & 1N O N 0 O O o N M =2
— — — — — — — — — — N N N N o
o o o o o o o o o o o o o o Z
N N N N N (V] N N N N N N N N

* v (A, B,, C,)isan as-path because as(A,, B,) and o4(B,, C,) hold

* vy (A B;, C)isana,; U a,-path because o(A;, B;) and a,(B;, C,)

hold => an ay ;-path

* IfA=B=C,, we have a sub- a,-path but NOT an a5-path

7/2/24
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Examples of a-paths

* Query 6. List all the a-paths between Kea and Luca during the interval
[2015-2021)

* Answer:
* Ana,gq9-path whose O relations are: ay (A, B,), a,(B, C;), a;;(C1, D1)
* Anay,gpath path whose O relations are oq(A,, B,), ag(B,, C,), 04(C,, D)

B

A

- AAY D,
Q2 Peter —» Luca
Qs
Qy C C C
@5 Jay - Peter - . — £
O((} —_—
ar . B B, B3
as . Wei - Jay 1 9 9
ag s —

: — . A]_ Az A3
« _
a}(f Kea - Wei — 0 time

Now A

H $ o
13 : ] 414 d4d 4 4 4 4 d4 d A g
(o]

2021
2022
2023
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Classification of paths

* The base Allen relations can be divided into three groups, based on when
the second interval in the relation starts, with respect to the first interval
* Backward, containing the relations a,, a, , as, a,, O-
* Co-Temporal, containing the relations a; o, og
* Forward, containing the relations a,, o, 04, 035, O3

A

O] | —
a2
Backward &3

e B

a5

(0
Co-Temporal o
ag

_
Q9 g —_—

10
Forward 11

12 : :
13 : : S —
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Classification of paths

* Another classification depends on the intersections
* Intersecting, contains the relations a, o, , a3, a,, ac, o, , a,, ag, g,
Q10 , U1
* Non-Intersecting, contains the relations a,, a, , a,, 03

& i i Non intersecting - Backward
az
as
a, Intersecting - Backward
as
06 I
Qs Intersecting - coTemporal
ag
a9 . —_— |
a10 i _i Intersecting - Forward
all i=
ai12 i —: Non intersecting - Forward
13 ' : m—
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Problem

Define our (intuitive) paths in terms of Allen’s algebra
Define other useful paths based on this algebra

7/2/24 EBISS - 2024 - Padova - Italy

66



Continuous path (Allen’s intervals)

* Given a Temporal Network (N, r ), a continuous path (cp) with interval T from
node n, to node n,, traversing a relationship r, is a structure ((y, /), T) where:

e (v,l)isan a ;5,,-path.
eT=nTi
o T I= @

As we can see, in this kind of paths, all relations belong to the Intersecting group
either Forward, Backward or Co-Temporal.
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Continuous path queries

Query 7. Find the continuous paths between Kea Sanders-Upcott and Luca Mori
with a minimum length of 3 and a maximum length of 4

e v = (Kea, Wei, Jay, Peter, Luca) B 4

*/=(A, B, Cy, D) %% —

* ag9(Ay Bs), a9(By, C3), 10(C Di) => ag,10-path gz Em—

« T=1[2017,2018) i ——
Query 8. Find the continuous paths % —
between Kea Sanders-Upcott and o T
Peter Norton between [2021-Now]. N

e v = (Kea, Wei, Jay, Peter) reter = buead I . . .
o= (Ag, Bg’ C 3) Jay - Peter - . :20 .
e | = a,(As, B3), ag(Bs, C3) => a5 ,-path et =Javs I 1 N 1 N
e T=[2021,2022) eawei| = | R

2021

20224

20234
Now
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Pairwise continuous path (Allen’s intervals)

Given a Temporal Network (N, r ), a pairwise continuous path (pcp) traversing a
relationship ris an a ;,;-path

Query 9 Find the pairwise continuous paths between Kea Sanders-Upcott and Peter
Norton, with a minimum length of two and a maximum length of three.

e y = (Kea, Wei, Jay, Peter)

o | = o 11(Ay, By), aq1(By, C;) [2011,2013), [2012,2015),[2014, 2016)
o /= o(A,, B,), 0s(B,, C,) [2015,2020), [2016,2019),[2017, 2018)
o | = 0 ,(As, Bs), ag(Bs, C3) [2021,Now], [2022,Now],[2021, 2022)

B A
O] — AY b
02 Peter - Luca 1 -
a3
Ay C C C
Qs Jay — Peter L —2q 2
a B B B
(0%
a; ‘ Wei - Jay 1 — — :
o : —
a?o : — K Wei A Az 5 As
Q11 €a — Vel time

2010
2011
2012
2013
2014
2015
2016
20174
2018
2019
2020
2021
2022
2023
Now -
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Consecutive path (Allen’s intervals)

Given a Temporal Network (N, r ), a consecutive path (pcp) traversing a relationship
risan ay;-path. Can be forward, backward or co-temporal.

* Used for scheduling
« Example

[ LocatedAt g Cit

- . City
LocatedAt Flight [2024-03-07 17:00—2024-03-07 21:35) Airport [Mame: Sao Paulo | Name: London
Code: BRC «——Flight [2024-03-08 10:00—2024-03-08 14:35)— . 4o. Gry «——Flight [2024-03-07 21:00—2024-03-08 05:00)
LocatedAt
.'
City Flight [2024-03-07 11:10—2024-03-07 14:15)
Name: Bariloche Airport

Flight [2024-03-07 15:30—2024-03-08 06:55)

Code: LHR
Flight [2024-03-07 16:05—2024-03-07 18:25)

Airport Flight [2024-03-07 14:25—2024-03-08 06:35)4]

Code: EZE Flight [2024-03-07 22:30—2024-03-08 09:10)

Flight [2024-03-07 09:30—2024-03-07 11:35)_|

Flight [2024-03-08 13:00—2024-03-08 15:25)

City

= Name: Buenos Aires

Flight [2024-03-07 18:20—2024-03-07 20:44)

Flight [2024-03-08 10:00—2024-03-08 12:00) City
‘ LocatedAt Name: Santiago
Airport Flight [2024-03-07 21:55—2024-03-08 08:25)
Code: SCL Flight [2024-03-07 15:55—2024-03-08 10:15)
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Consecutive path (Allen’s intervals)

Query 10 How can | go from London (LHR) to Bariloche (BRC) arriving as early as
possible? => earliest arrival path query , => (LHR, GRU, BRC)

Query 11 How can | arrive in BRC departing from LHR as late as possible and
arriving before July 8th at 8 pm? => latest departure path query

(LHR, EZE, BRC)

EZE - BRC - =#= viaGRu
SCL —» EZE o == via SCL-EZE
LHR - SCL A

1

I

|
The two options are :
. EZE - BRC 1 |
consecutive paths (o5-paths) roezed |k
|

|

|

GRU — BRC A1
LHR - GRU A

1

7 13:00
-07 15:00 -

-07 23:00 4
-07 01:00 -
-07 03:00
-07 05:00 44
7 07:00 4
-07 09:00 -
-07 11:00

o o o o o o o (ID o

07-07 21:00 4

07
08
08
08
08-
08
08
08
08
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Agenda

 Temporal Graph Databases
 Temporal graph data models
* An abstract data model
 The T-GQL query language
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T-GQL: A query language for temporal graphs

* Defined over the abstract model

* Based on Cypher, Neo4j’s high-level query language

* Cypher's formal semantics can be found in *

 We assume functions compute paths (cPath, etc).

e Typical SELECT-MATCH-WHERE form

e SELECT projects variables defined in the MATCH clause (aliases allowed)

* MATCH clause may contain one or more patterns and function calls

« AT-GQL query returns a temporal graph. Can be modified by the SNAPSHOT
operator, which returns a non-temporal graph

* Francis et al. Cypher: An Evolving Query Language for Property Graphs. SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018.
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T-GQL by Example

*  “Name of the friends of the friends of Wei Xu”.

SELECT p2.Name AS friend name
MATCH (pl:Person)-[:Friend*2]->(p2:Person)
WHERE pl.Name = ‘Wei Xu’

To list the three paths in the answer we write:

SELECT *
MATCH (pl:Person)-[:Friend*2]->(p2:Person)
WHERE pl.Name = ‘Wei Xu’
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T-GQL by Example — Temporal operators

 SNAPSHOT: Returns the state of the graph at a certain point in time. Yields a non-
temporal graph

*  “Who were friends of Wei Xu in 2018?”

SELECT p2.Name AS friend name

MATCH (pl:Person) - [:Friend] -> (p2:Person)
WHERE pl.Name = 'Wei Xu'

SNAPSHOT '2018'
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T-GQL by Example — Temporal operators

 BETWEEN: Computes the intersection of the graph intervals with a given interval
Exactly one interval is allowed. The granularity of both intervals must be the same

* “Where did people who where friends of Kea between 2011 and 2013 live at that

time?”

SELECT c.Name

MATCH (pl:Person) - [:Friend] -> (p2:Person),
(p2) - [:LivedIn] -> (c:City)

WHERE pl.Name = ‘Kea Sanders-Upcott’

BETWEEN ’'2011’ and 2013’

The only Friend relationship valid during the interval was Wei Xu, so the query returns Mumbai, the
city where Wei lived since 2001.
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T-GQL by Example — Temporal operators

 WHEN: Expresses parallel-period queries. Function calls not allowed in inner
queries.

* “Who were friends of Kea while she was living in Buenos Aires?”

SELECT p2.Name AS friend name

MATCH (pl:Person) - [:Friend] -> (p2:Person)
WHERE pl.Name = ‘Kea Sanders-Upcott’
WHEN

MATCH (pl) - [e:LivedIn] -> (c:City)

WHERE c¢.Name = ’'Buenos Ailres’

Kea lived in Buenos Aires between [2016-Now], thus, any person who was a friend of Kea at any
instant of that interval would be in the result (in this case, Wei and Peter).
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T-GQL by Example — Temporal operators

 WHEN: Expresses parallel-period queries. Function calls not allowed in inner
queries.

 “Where did Jay live when he and Sandra followed the same brands?”

SELECT c.Name as city, bl.Name as brand

MATCH (pl:Person) - [:LivedIn] -> (c:City),
(pl) - [:Fan] -> (bl:Brand)
WHERE pl.Name = ‘Jay Bedi’
WHEN
MATCH (pZ2:Person) - [f:Fan] -> (b2:Brand)

WHERE pZ2.Name = ’"Sandra Perez’ AND bl.Name = b2.Name

Jay and Sandra followed LG together between 2020 and 2023. In this interval, Jay

lived in Mumbai and Sandra in Paris. So, (Mumbai, LG) is the answer to the query.
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T-GQL: Continuous Path queries

* “Compute the friends of the friends of each person, and the period such that the
relationship holds continuously through all the path.”

SELECT path
MATCH (n:Person),
path = cPath((n)-[:Friend*2] -> (:Person))

The modifiers SKIP and LIMIT can be used, as in Cypher, to get a specific path or a
range.

SELECT path
MATCH (n:Person),
path = cPath((n)-[:Friend*2] -> (:Person))
SKIP 2
LIMIT 1
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T-GQL: Continuous path queries

* Find the continuous paths between Kea Sanders-Upcott and Luca Mori with a
minimum length of three and a maximum length of four.

SELECT paths
MATCH (pl:Person), (p2:Person),
paths = cPath((pl) - [:Friend*3..4] -> (p2))
WHERE pl.Name = ‘Kea Sanders-Upcott’ AND pZ2.Name = ‘Luca Mori’

 The cPath function computes the continuous path
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T-GQL: Continuous path queries

* Find the continuous paths between Kea Sanders-Upcott and Luca Mori with a
minimum length of three and a maximum length of four in the interval [2017,2018).

SELECT paths
MATCH (pl:Person), (p2:Person),

paths = cPath((pl) - [:Friend*3..4] -> (p2), ‘2017', ‘'2018")
WHERE pl.Name = ‘Kea Sanders-Upcott’ AND pZ2.Name = ‘Luca Mori’

* Intermediate results of a query can be filtered by a user-provided interval
W that filters out the paths whose interval does not intersect with W

 The result is a single path of length four (the other possible path, with
length one, is discarded), with interval [2017, 2018).
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CPs between

Kea Sanders-Upcott
and Luca Mori with
3 <=length <=4

Livedin [1990-2016) ———  >{City <

T-GQL: Continuous path queries

Name: Brussels

Person

[1990-Now,

[2017, 2018)

Name: {Kea Sanders: [1990-2014),

Kea Sanders-Upcott: [2014-Now)}

Occupation: {Engineer: [2013-Now)}

hFan [2005-2008)
——Fan [2020-Now)—>] Brand

[
Livedin [2016-Now)

City

Name: Buenos Aires

Livedin [1995-Now)

| Friend [2020-Now)

Person

[1995-Now)

Name: {Luca Mori:
Occupation: {PHD Student : [2020-Now)}

[1995-Now)}

[2017, 2018)

7/2/24

Friend [2015-2018)

\ 4

Name: Samsung

Fan [2005-2008)

Person
Name: {Sandra Perez: [1997-Now)}
Occupation: {Architech: [2020-Now)}

|

Fan [2019-2023)

Livedin [1997-Now)

City

Name: New York

Brand
Name: LG

Livedin [1960-Now)

Person

[1960-Now)

Name: {Peter Norton: [1960-Now)}
Occupation: {teacher: [1985-2010),
author: [2010-Now)

««———LivedIn [1978-2003)

Friend [2011-2013)[2015-2020)[2021-Now)—l

| Person

[1978-Now)

Name: {Wei Xu: [1978-Now)}
Occupation: {Doctor: [1996-Now)}

[1997-Now) [«—Friend [2020-Now)

[«——Fan [2020-Now)

Livedin [2003-Now)

City

Name: Mumbay

Livedin [2001-Now)

«——(moN-1Z02](6T02-9T02](ST0Z-2T0Z] PUaLI—

Livedin [1980-2001)

[2017, 2018)

Person

[1980-Now)

[ «—Friend [2014-2016),[2017-2018)[2021-2022)

[2017, 2018)
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Occupation: {Dentist: [2004-Now)}
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T-GQL: Continuous path queries

* Find the names of the persons such that there is a continuous path of length 2 or 3
from them to Peter Norton.

SELECT pl.Name

MATCH (pl:Person), (p2:Person)

WHERE pZ2.Name = ’'Peter Norton’ AND
cPath((pl) - [:Friend*2..3] -> (p2))

e The cPath function is overloaded to return a Boolean value
* In this case the function call is in the WHERE clause (NOT in the SELECT)
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T-GQL: Pairwise Continuous path queries

* Find the pairwise continuous paths between Kea Sanders-Upcott and Peter Norton
with a minimum length of two and a maximum length of three.

SELECT paths
MATCH (pl:Person), (p2:Person),

paths = pairCPath((pl) - [:Friend*2..3] -> (p2))
WHERE pl.Name = ‘Kea Sanders-Upcott’

AND pZ2.Name = ‘Peter Norton’
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T-GQL: a-path queries

 Compute all the a-paths between Kea and Luca during the interval [2015-2021)

SELECT paths
MATCH (pl:Person), (pZ2:Person),
paths = alphaPath((sl)-[:Friend*4]-> (s2), '2015",72021")
WHERE pl.Name = "Kea Sanders-Upcott’ AND
p2.Name = '"Luca Mori’

There are two a-paths in the result in this case.
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T-GQL: Consecutive path queries

 How can | go from London to Bariloche arriving as early as possible?

SELECT path

MATCH (cl:City)-[:LocatedAt]->(al:Airport),
(c2:City)-[:LocatedAt]->(a2:Airport),
path = fastestPath((al)-[:Flight*]->(a2))

WHERE cl.Name = ‘London' AND c2.Name = ‘Bariloche’

* Show the way to arrive in Bariloche departing from London as late as possible and
arriving before July 8th at 8 pm.

SELECT path

MATCH (cl:City)-[:LocatedAt]->(al:Airport),
(c2:City)-[:LocatedAt]->(a2:Airport),
path = latestDeparturePath((al)-[:Flight*]-> (a2),'2019-07-15
20:20")

WHERE c¢l.Name= ‘London' AND c2.Name = ‘Bariloche’
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A logical model for temporal graphs

* We now implement the abstract model
 The logical model is called TGraph, derived from the abstract model
 |Implementation based over the property graph data model, in
particular, Neo4j
e Abstract model: easy to understand, helps the user to think about the
queries, without caring about implementation details
 Must be translated into the TGraph logical model
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TGraph: a temporal property graph model *

e Astructure G(No, Na, Nv, E) where

G: name of the graph, E a set of edges
No: set of object nodes

Na: set of attribute nodes

Nv: set of Value nodes

* Object nodes and attribute nodes are associated with a tuple (title, interval)
* title represents the content of the node
* interval are the time periods when the node is (or was) valid

« Similarly, value nodes are associated with a tuple (value, interval)

* A special value Now tells that the node is valid at the current time

* All nodes also have a (non-temporal) identifier denoted id

* +temporal constraints

* (Debrouvier et al, VLDB J. 30(5): 825-858 (2021)
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https://dblp.org/db/journals/vldb/vldb30.html

TGraph: a temporal property graph model

 Constraints

* All nodes in the graph have a different id

* All (value) nodes with the same value associated with the same attribute
node are coalesced (interval is a set of intervals)

e All edges with the same name between the same pair of nodes, are coalesced

* An Object node can only be connected to an attribute node or to another
object node

* An Attribute node can only be connected to a non-attribute node

* A Value node can only be connected to attribute nodes

e Attribute nodes must be connected by only one edge to an object node

* Value nodes must only be connected to one attribute node with one edge.
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T-GQL over the logical model

 T-GQL: a high-level query language for graph databases

* T-GQL implementation extends Cypher with a collection of functions,
implemented as in the APOC library, added as a .jar file

 The T-GQL language grammar was implemented using ANTLR

 T-GQL queries translated into Cypher and executed on a Neo4j server that
contains the plugins to run the temporal operators and path algorithms

E - j Plugins
Graph DB

Neo4J Environment

7N
( ANTLR )
N/

Webapp

L
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T-GQL translation

SELECT p
MATCH (p:Person)
WHERE p.Name = "John’ and p.Age = 18

* Object nodes in the MATCH clause translated as {alias:Object {title: ‘Name’}}
 E.g., “(p:Person)” would be translated to {p:Object {title: ‘Person’}}.

 Edges not translated, match the Cypher’s grammar

* For each attribute in the SELECT clause, a three-node path (Object - Attribute
- Value) is produced from the object node

Variables starting with ‘internal’ (generated by the parser) are reserved.
The conditionp.Name = ‘John’ and p.Age = 18 translated as:

MATCH (p)-->(internal n:Attribute{title:’Name’})-->(internal v:value)
MATCH (p)-—->(internal a:Attribute{title:’"Age’})-->(internal vl:value)
WHERE internal v.value = ’"John’ and internal vl.value = 18
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T-GQL: Temporal granularity

* Problem extensively studied in temporal database theory
* (Queries may mention a granularity qg different than the graph's objects og
* When this is the situation, two cases may occur:

* qgisfiner than og => the coarser granularity transformed into the finer
one. E.g., if og.interval =[2010, 2012), and the conditionistIN
og.interval where t =2/10/2012, then, the interval is transformed into
og.interval = [1/1/2010, 1/1/2013) => answer = true

* ggis coarser than og => one time instant in the granularity of og is
chosen (the finer in transformed into the coarser). E.g., if og.interval =
[15/10/2010, 23/12/2010), and the condition is 2010 IN og.interval, the
the object’s interval becomes og=[2010, 2011) => answer = true
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T-GQL: Temporal granularity

In our example, if a query asks for Jay's friends on October 10th, 2018, we
cannot give a precise answer, and the query must use the semantics explained

 T-GQL supports the following granularities

Year: yyyy
YearMonth: yyyy-MM

Date: yyyy-MM-dd
Datetime: yyyy-MM-dd HH:mm

7/2/24 EBISS - 2024 - Padova - Italy 98



T-GQL: Path queries

 The T-GQL language supports the path semantics studied above

(we extend this later)
e Continuous path semantics
* Pairwise Continuous path semantics
* Consecutive path semantics
* o —path semantics

 Semantics implemented by means of functions, which are
included in a library of Neo4j plugins

* To compute temporal paths, two types of functions are defined
* Coexisting
* Consecutive

* Both receive two nodes as arguments
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T-GQL translation

SELECT p.path as path, p.interval AS interval

MATCH (pl:Person), (p2:Person), p = cPath((pl)-
[:Friend*2..3]->(p2),’2018",72021")

WHERE pl.Name = ’'Kea Sanders-Upcott’

* Translation:

MATCH (pl:0bject{title:’Person’}), (p2:0bject{title:’Person’})
MATCH (pl) --> (internal nO:Attribute{title:’Name’})
—-->(internal v0:value)

WHERE internal v0.value = ’'Kea Sanders-Upcott’

CALL coexisting.coTemporalPaths (pl,p2,2,3 {edgesLabel:’Friend’,
nodesLabel:’ Person’, between:’"2018-2021",direction:’outgoing’ })
YIELD path as internal pl, interval as internal 11

WITH {path:internal pl,interval:internal il} AS p

RETURN p.path AS ’'path’, p.interval AS ’"interval’
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TGraph implementation

* Find the continuous paths between Kea Sanders-Upcott and Peter Norton with a
minimum length of two and a maximum length of three, in the interval [2016,2020].

SELECT paths
MATCH (pl:Person), (p2:Person),

paths = cPath((pl) - [:Friend*2..3] -> (p2), '2018', '2020")
WHERE pl.Name = ‘Kea Sanders-Upcott’ AND pZ.Name = ‘Peter Norton’
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T-GQL: Continuous path queries

* Find the continuous paths between Kea Sanders-Upcott and Peter Norton with a
minimum length of two and a maximum length of three.

"path": [
{ "interval": [”1990-Now" ], // interval of the attribute node
"attributes": {

"Name": |
{"value": "Kea Sanders-Upcott",
"interval": "[2017 - 2018]" }] // value node interval
}, returned 1is the
"id": 10, // id of Object node. interval of the CP
"title": "Person” // Object node note: value node
}, inlined 1n the
{ attribute node
}
1y
"interval": "2017-2018" // interval of the CP

}
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T-GQL: Continuous path queries

Find the continuous paths between Kea Sanders-Upcott and Peter Norton with a
minimum length of two and a maximum length of three.

* The figure shows the format of the result.

* Attribute and value nodes are inlined to facilitate their search

* The value “Kea Sanders” is ignored since its interval [1990-2014] does not
intersect with the CP’s interval [2017-2018]

* The value node returned has the interval [2017-2018], i.e., the
intersection of the intervals [1990-Now] (the interval of the value node)
and [2017-2018]

* Finally, the interval of the CP is [2017-2018], which is the result of the
intersection between the traversed edges
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Transportation networks

e Transportation networks: physical networks through which objects or
substances can move. Examples include:

e River networks (water and other substances move) !

e Road networks (cars, bicycles and pedestrians move) -
e Computer networks (information moves)

e Electricity grids (electricity moves)

e These physical networks typically embedded
in a geographic space
e Left: physical network; Right: graph model
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Transportation networks

e Topological data model
o Left: segments as edges

e Right: segments as nodes
(flow model*)

* Bollen, E., Hendrix, R., Kuijpers, B., & Vaisman, A. Towards the Internet of Water: Using Graph Databases for

Hydrological Analysis on the Flemish River System. Trans. in GIS, 25 (6), 2907-2938, 2021.
https://doi.org/10.1111/tgis.12801
7/2/24
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Transportation networks

e Atransportation network TN is a directed graph (N, Flow), where N is a
finite set of nodes and Flow € N x N is a set of directed edges,
representing the flow of a subject (e.g., water) from one node to another

e Sensor-equipped transportation network when, at certain locations in the
TN, there are sensors that measure some parameter

e These measurements come together with a timestamp

e We use a river system example*, sensors measure water height,
temperature and salinity of the water (electric conductivity)

e Sensor measurements often taken at regular moments in time and the
frequency may vary from once per minute to once per hour, etc.

* Bollen, E., Hendrix, R., Kuijpers, B., & Vaisman, A. A. Time-series-based queries on stable transportation networks
equipped with sensors. Int. J. Geo Inf., 10 (8), 531, 2021. https://doi.org/10.3390/ijgi10080531
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Sensor networks

e A sensor-equipped transportation
network (or sensor network, for short)
SN is a four-tuple (N, Flow, S, ts) s.t: m,mm.u».(3.5).(4.10).(.5_m.w.m,w_w_m_(9_m}}T
e (N, Flow) is a transportation network; K@

e SC Nis a set of sensor-equipped
L\IU«(E)AII)/T ?

nodes (sensors, for short); and ( }
e ts:S > 2MXVjs a (time-series) function
that maps sensors to finite functions @X/@
from ']I‘ to W {(1,12),(2,8),(3,10), (4,10),(5,9), (6,10), (7, 11),(8,11), (9,12)} e /@)
* In general, we consider T and V as being ®\\i
the set of the real or rational numbers,
but V can also be natural numbers, e.g., ?
categories ®

{(1,9),(2,10),(3,9), (4,10), (5,12),(6,9), (7,10), (
)
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Transportation networks

e Between measurements we can use any interpolation function
e Here we assume a step function
{(1,12).(2‘10),(3.8).(4.10).(5.1‘2).(6‘.0),(7.8.5).(8.8).(9.10)}}T

e For Sensor 1 we have:
-

{(1,9), (2,10, (3,9), (4, 10), (5,12), (6,9), (7, 10), (8, 11), (9, 11) ?
)

}
101+ | —) —r Lt
A e T O
: : —) : : : —) :
; ; : : ; : : ; ; : {(1,12), (2,8), (3,10), (4, 10), (5,9), (6, 10), (7, 11), (8, 11), (9, 12)} .
L & /@
S @\\\

®

15+
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Abstract data model for sensor networks

* An abstract representation of a sensor network

* Sensor nodes: nodes that hold a sensor, different from Segment nodes

* Intervals in sensor nodes: periods when a segment holds a working sensor

* Intervals may indicate the presence of a sensor that no longer works or the
removal of a sensor

* Sensor nodes contain time series of the values of categorical variables

* Edges between nodes are labeled Flow

* We denote this as the abstract sensor network model or SN Graph

Segment

id: 2

Flow

Temperature:

{low:  [3-4)[7-9),
Medium: [6-7),

High:  [1-3),[4-6)[5-10)}

Segment

Flow

Segment

id: 6

id: 4

id: 3

Flow—{ Temperature:

Flow

{Medium: [1-2)[3-4)[6-7),
High:

[2-3)[4-6),[7-10)}

Flow—

(Lo:: [2-3),
Medium: [5-6),
High:  [1-2),[3-5)[6-10)}
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Temporal paths in sensor networks

e Based on the abstract model, we redefine the paths

e We want to address queries like “Starting from a segment, obtain all the paths
and their corresponding time intervals I;such that the temperature along the
path has been simultaneously High for all nodes in the path during I;”.

e Thisis a “special” kind of CP

* Now, the notion of CP depends not only on the network topology but also on
the values of the variables

e We denote them SN Continuous paths
e We study SN paths next and generalize them based on Allen’s Algebra
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Temporal paths in sensor networks

e Apathy=(ny, n, ...n,)inasensor {(1_m(2‘10).(3‘W.m).<5,12,.M(7.5.5).(5.8).(9.10)}/?
network SN, is a directed path in (N, Flow, 7@<®

S, ts). i

e Eg,v=(1,3,4,58,12)isapathof . i en e
length 5.
e A sub-path of a path y in a sensor network
SN consisting of all its sensor nodes is (125610 (410.6:9,6.10), (10, (5.10,0.12) i f /@
a full sensor sequence of y. 0
— Denoted by fss(y). @\@if

— fss(y) = (s4, Sy, ..., Sk), Sjand s;,; are called
consecutive sensorsony(i=1,...,k-1) &)

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., & Vaisman, A. A. Temporal Paths in Real-World Sensor Networks Int. J.
Geo Inf., 13(2) : 36, 2024 . https://doi.org/10.3390/ijgi13020036

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., & Vaisman, A. A. Analysing River Systems with Time Series Data using
Path Queries in Graph Databases. Int. J. Geo Inf.,, 12 (3), 94, 2023. https://doi.org/10.3390/ijgi12030094
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Temporal paths in sensor networks

series ts(s), and c a predicate on the
set of measurements V 7&
e The set Val(s) consists of all time /7‘3
{(1,9),(2,10), (3,9), (4, 10), 7,10), (8,11), (9,11

instants t such that values in the time

e LetsbeasensornodeinN, with time (.. 0069 010.6.9.6 /jb/@
series of a sensor satisfies the

predicate c. Called the validity time set .2.co.c0.w0.69.00, @\/@/@
for condition c at sensor node s @\\i .

e Example: For temp > 10, Val(s;) = {[1, 3) U [4, 6) U [9, Now) }
e The time interval I when Val(s) is satisfied is called a c-interval for s
If I is maximal, it is called a maximal c-interval

@
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Temporal paths in sensor networks

* C temp 2 10 and S]_ - 1 52 4; 53 = 8 {(1,12),(2,10), (3,8), (4,10), (5,12), (6,9),(7,8.5),(8,8),(9,10)} /jD
e Vertical axis represents the direction of /@
the flow 79\
e [1, 2): c-interval for s, /79
{(1,9),(2,10),(3,9), (4,10), (5,12), (6,9), (7,10), (8, 11), (9, 11

e [4,6): maximal c-interval for s,

o {(1,12),(2,8), (3, 10), (4,10), (5,9), (6, 10), (7, 11), (8,11), (9, 12)} \ />
A

Cl C2 CS (5)
S3 =+ =0 ] 0 @

@

Al A2 A3

S _— o a—

time

1 2 3 4 5 6 7 8 9 Now
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Temporal paths in sensor networks

e Let SN be a sensor network and let c be a condition on sensor values. Let a
be a binary relation on temporal intervals. A temporal a-path in SN subject
to condition c is a structure (y, ((s1, 1;), (S5, 15), ..., (s, 1)), where

ey is a pathin SN;

o fss(y) = (s, Sz e SK);
* |;is a maximal c-interval fors, forj=1, ..., k; and
e a(l;, I,;) holdsforj=1,...,k-1

* When |;is a c-interval (not maximal) for s, the path is called a temporal
sub-a-path in SN
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Example

e v=(1,3,4,5,8,12)
e ¢ = high water temperature
* (v, ((s1, A1), (s2, Ba), (s3, C3))) is an oy, 13-path, since ay3(Ay, By) and ay»(B,, Cs) hold

S3 =+ =0 ] 0

So L o o o

Ay Ay Az gsl)o

S]_ - —) e} iii®] 11

A
— :
(074 — :

time a3 —

o

1 2 3 4 5 6 7 8 9 Now
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Path properties in sensor networks

e We study three properties of interest
- Backward, co-temporal and forward relations (already defined)
— Closure under sensor deletion
— Temporal and spatial robustness

A

O] | —

Q2 . :
Backward ‘3 ; :

0y i ¢+ B

(071 - i

(873
Co-Temporal q

as

I—

a1
Forward 11

@12

13 s : ——
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Backward relations

* ay55(/i, li,7) => means that the phenomenon moves backward in the network

e Examples: pollution caused by a boat that travels upstream in a river network, a
salmon swimming upstream or a traffic jam on a road network...

al ———
Q2
Backward &3

Qs

(0%
Co-Temporal q
asg

a1
Forward 11

@12
13
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Backward relations

e High values of water temperature are produced earlier in the nodes closer to the
sea, that is, the High temperatures arrive later to the sensors that are farther from
the sea

e Example: temperature was High Node 4 at 10:15, but this effect only reached Node 1
at 12:30, temperature moves backwards

Time Value Time Value Time Value Time Value
) 10:00 6 10:00 8 10:00 8 10:00 8
’. z'e:i:egme"‘ 10:15 2 10:15 7 10:15 7 10:15 12
10:30 5 10:30 6 10:30 6 10:30 15
Sensor node 10:45 5 10:45 8 10:45 9 10:45 16
11:00 4 11:00 8 :00 8 11:00 6
Segment node 11:15 8 11:15 9 11:15 7
Attribute node 11:30 9 11:30 9 11:30 11 11:30 8
11:45 7 11:45 8 11:45 8 11:45 4
D Value node 12:00 6 12:00 12 12:00 8 12:00 6
12:15 7 12:15 12 12:15 7 12:15 7
12:30 16 12:30 6 12:30 6 12:30 7
12:45 15 12:45 5 12:45 5 12:45 6
j—flowsTo» 1 =~flowsTow —flowsTop| 2 ———flowsTo—P» 3 ~flowsTop —~flowsTop —flowsTopr| &
Temp Temp Temp Temp
Low High Low 'High Low High Low 'High
[10:00-12:30) [12:30-13:00) [10:10-12:00) [12:00-12:30) [10:00-11:15) [11:15-11:45) [10:00-11:15) [10:15-11:00)
[12:30-13:00) [11:45-13:00) [11:00-13:00)
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Co-temporal relations

e Both intervals start co-temporally, independent of the flow of the network and
without any delay

e Example: causes that are external to the network, like rainfall, which starts at the
same time at several locations in the network

Qa2 , :
Backward &3 §
0y ; + B

Qs

(0%
Co-Temporal q
asg

_—

a1
Forward 11

@12

13 e ; —
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Forward relations

e Typical for cases where some phenomenon is propagated through the network,
following its natural flow

e Examples: external spills of pollutants in a river system and the density of traffic on a
road network

(%)
Backward &3

i B

Qs

(0%
Co-Temporal q
ag

—

a1
Forward 11

12 : :
13 : S —
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Closure under sensor deletion (CUSD)

e |ntuition: when a sensor does not work, or data are lost, the temporal path
without this sensor still belongs to the same class of temporal paths

e Why would we want this?

- When the number of sensors in a network is high, we may want to look for
temporal paths belonging to a certain class on a sample of the sensors

- If a class of temporal paths is CUSD, if we know that a temporal path belongs
to that class, if we remove a sensor, the path will still belong to that class

- If a path of a certain type is CUSD and it is not found on a subset of sensors,
we would not find it on the complete set of sensors
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Closure under sensor deletion

e We have a temporal a-path (v, ((s1, /1), (S5, I5), . . ., (Sk, k), where a is some union of
basic Allen relations

e Question is: when we remove one of the sensor nodes s; from the path, is (y, ((s3, /1),
(s2, 12), «oes (Sj=1s 11-1), (Sjs1, li22), - -+, (Sk, 1)) still an a-path?

e All classes are defined in terms of relationships between intervals of consecutive
sensors => it suffices to look at any three successive sensors and their intervals /;_; and

[

j+1
e Inotherwords: If (I3 I;) and ( I;, I.,1) satisfy relation o, does (.5, I;+;) also satisfy a?
e The relation a is closed under sensor deletion if and only if a is a transitive relation
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e |n green, classes CUSD

Closure under sensor deletion

ai

az

a3z

ay

as as az ag a9 aio

a1

a12

ai3

e oz CUSD because, if ag(A, B) and ag(B, C)

7/2/24
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Closure under sensor deletion

e |n green, classes CUSD

ai az as ag as as az ag a9 aio a1 a2 ai3

e oz CUSD because, if ag(A, B) and ag(B, C), if we delete B, we still are in the ag(A, C)
class

|
|
I
|
I
|
|
|
|
|
l
|
!

' |
! |
|

l
! |
! 1
|
| |
! |
' |
! |
| |
! |
! |
|
|
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Closure under sensor deletion

e |n green, classes CUSD

aq arz as ay as dg az ag dg

aio

* a4, hot CUSD because, if aq,(A, B) and a;,(B, C)
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Closure under sensor deletion

e |n green, classes CUSD

ai az as ag as as az ag a9 aio a1 a2 ai3

* a4, hot CUSD because, if a;,(A, B) and a4,(B, C), if we delete B, a gap between A and
Cis created => we are in the a;3(A, C) class

e In fact, a,3is CUSD, as well as a;, U a3
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Combinations closed under sensor deletion

7/2/24

a3 | Q4 I QAs Qe Qa7 Qs Qs | Q1o | Q11 | Q12 | O3 ar | Qs Qo | 0o [ 011 | 02 | 043

FENEREEREE
HQ
B
I3
g
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S2 J

S1 <=

Temporal Robustness

e We have an ay,-path, a5(/4, 15) (left) measured by the hour

e We double the frequency, and c is satisfied at 2:30 at s,, and at 3:00 at s; (center) OR
e We double the frequency, and c is satisfied at 2:30 at s; and not at 2:30 at s,(right)

e Then, aq,(/4, 15) is transformed into aq4(/;, I5) (center) or ays(/4, 15) (right)

e A robust version would be a;; Ua, U ags

o 27 A
B . by s BRI
: — I B s e S & g
L T : : . I
= SI4 —— i i St .
time (h) P time (h) time (h)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

7/2/24 EBISS - 2024 - Padova - Italy 132



Spatial Robustness

We have an ay,-path, a,,(/4, 1,) (left) reflecting a forward movement of a phenomenon
— I, can be seen as a “delayed” version of /; (with delay d)

— Depending on the distance between sensors
If sensors were placed closer to each other there may be an overlap => a;(/4, 15)
If sensors were placed farther from each other, there may be no overlap => a5(l4, 15)
— This is because the delay would prevent the phenomenon to reach s2 on time

e A robust version would include a;; Uay, U a3

R 47 47
I i 1 iE L 0 ket |
ol il 2+ | —— e i | e |
I (o 6L
s14 . St e——— i SIT et .
time (h) bbb time (h) 5 time (h)
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
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Robustification Algorithm

e Rationale: when a relation involves matching start or end points of intervals, we also
include the a; that corresponds to starting (or ending) a bit before or after that
matching point

e Two options: go from coarser to finer granularity or vice versa
e Repeat the transformations until a fixed point is reached
e From coarser to finer:

If Contains Then Add
(67) a1 Uas
Q
o7} az U as B A
Qg a3 U ag -
(6D}
oy ag U ag G
o7 oyg U %r —
7
Qg as U agg . p—
« —
10 (875! U a11 gl? S S—
'12 ——
12 a11 U ais e
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Robustification Algorithm

e Rationale: when a relation involves matching start or end points of intervals, we also
include the a; that corresponds to starting (or ending) a bit before or after that

matching point

e Two options: go from coarser to finer granularity or vice versa

e Repeat the transformations until a fix point is reached

e From finer to coarser:

If Contains Then Add
a U Qa3 (05)
a3 U as 0y . n
a3 U g (673 o
(6D}
ag U ag Qy - e
o4 U agg (074 %r) —_—
T
as U o % o —
o R—
ag Uan Q10 o gy —
a1 U ags Q12 o
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Combination of properties

e Goal: Reduce the initial 8192 elements of the Allen interval algebra to obtain a
manageable number of cases that could be recognized as real-world situations

e There are eleven combinations of the Allen interval algebra that are both robust and
closed under sensor deletion

51 &2 a3 &y &5 &g &7 &g &9 &10 &11 &12 &13
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Paths that are CUSD and ROBUST

e y3-paths: (v, ((s1, 1), (52, 12), - - ., (Sk, Ik)), we have |; <12 < - - - < |, where < means
“strictly after” => Consecutive paths

e q,-paths: the backward version of a;;-paths
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Sensor network Consecutive path

Time Value Time Value Time Value Time Value
10:00 6 10:00 8 10:00 8 10:00 2
/A River Segment 10:15 12 10:15 7 10:15 7 10:15 4
. Sensor 10:30 15 10:30 6 10:30 6 10:30 5
. Sensor node 10:45 9 10:45 9 10:45 9 10:45 6
11:00 8 11:00 12 11:00 8 11:00 6
O Segment node 11:15 8 11:15 11 11:15 8 11:15 7
11:30 9 11:30 11 11:30 9 11:30 8
Attribute node 11:45 7 11:45 8 11:45 10 11:45 4
@ velue node 12:00 6 12:00 7 12:00 11 12:00 6
12:15 7 12:15 7 12:15 7 12:15 7
12:30 6 12:30 6 12:30 6 12:30 11
12:45 5 12:45 5 12:45 5 12:45 12
13:00 6 13:00 6 13:00 6 13:00 11

OFIows_to-.FIows_toQ—FIows_to—b.—FIows_to—btﬂows_toCO-F|ows_to>©—FIows_to>.

Temp Temp Temp Temp
[10:00-10:15) [10:15-10:45) [10:10-11:00) [11:00-11:45) [10:00-11:45) [12:45-12:15) [10:00-12:30) [12:30-13:15)
[10:45-13:15) [11:45-13:15) [12:15-13:15)
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Paths that are CUSD and ROBUST

e ag-paths: (v, ((s1, 1), (S5, 15), ..., (s, Ik), we have l; D1, D .- D1, where the
inclusions are strict. Forward paths that reflect a phenomenon that moves forward
through the transportation network and diminishes in strength, e.g., salinity that gets
dissolved as it moves in along the river. These are continuous paths

* as-paths: the backward version of ag-paths

5% 5] &3 L2 &5 &e &7 &g &9 &10 11 &12 &13
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Paths that are CUSD and ROBUST

e (agUayoU ayq U agp U aygs)-paths: (y, ((sy, 11), (s, 1), - -+, (Sk 1))

e C(Called Flow paths, reflect a phenomenon that moves forward through the
transportation network, is detected at a given sensor and starts to be detected at the
next consecutive one with a delay that usually corresponds to a network-related
delay.

%3 ) 7 &5 73 % og ) 10 ®11 a1y 13 B A

a1 |

(85

Backward &3

07]

(8431
(673

Co-Temporal a7

ag

(g
10

Forward vy,

12

13 : : —_—
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Sensor network Flow path

e A High value of Temperature detected in one sensor earlier than the first time it
is detected in the next one

e The measurements overlap in the first pair of sensors but not in the other pairs

e Includes a consecutive path (with a gap due to a network delay)

Time Value

Time Value

Time Value

Time Value

A

Temp
PN

Low High

[11:30-13:00)

T

Tem

N

Low

p

[10:00-10:15) [10:15-11:30) [10:10-11:00) [11:00-11:45)
[11:45-13:00)

N

Temp
b '\

Low High

[10:00-11:45) [11:45-12:15)
[12:15-13:00)

. 10:00 6 10:00 8 10:00 8 10:00 2
/iz;vr:'oiegm nt 10:15 12 10:15 7 10:15 7 10:15 4
10:30 15 10:30 6 10:30 6 10:30 5

Sensor node 10:45 15 10:45 11 10:45 9 10:45 6
11:00 14 11:00 12 11:00 8 11:00 6

Segment node 11:15 8 11:15 11 11:15 8 11:15 7
Attribute node 11:30 9 11:30 9 11:30 8
11:45 7 11:45 8 11:45 10 11:45 4

Value node 12:00 6 12:00 7 12:00 8 12:00 6
12:15 7 12:15 7 12:15 7 12:15 7

12:30 6 12:30 6 12:30 6 12:30 11

12:45 5 12:45 5 12:45 5 12:45 12

| i i |

}—Flows_top»{ 1 *+Flows_to ‘—F\mx'\?tu-} 2 —Flows_to—P{ 3 ~Flows_to¥ ‘—F\owito» —Flows_to»{ 4

\

Temp

PN

Low High

[10:00-12:30) [12:30-13:00)
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Paths that are CUSD and ROBUST

(a; U a, U azU a, U as) - paths: the backward version of Flow paths

Examples: A flock of salmon swimming upstream in a river system, or a traffic jam that
propagates backward on a road network

&3 &y &s &g &7 &g &9 &10 &11 &12 13 E 4 1

O] [—

Qa2

Backward &3

Qg

Qs
Qg

Co-Temporal o

asg
Q9

10

Forward ¢

12

13
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Paths that are not CUSD or robust (or both)

® Q3.1;- paths: pairwise continuous paths

e Neither robust nor transitive (e.g., in an a ;1-path, we delete an intermediate sensor,
and we get an a;3-path)

e However, they capture situations where every pair of consecutive intervals has non-
empty intersection, which can arise in real-world situations
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Sensor network Pairwise Continuous path

Time Value Time Value Time Value Time Value
/— River Segment 10:00 6 10:00 12 10:00 8 10:00 2
. Sensor 10:15 12 10:15 12 10:15 7 10:15 4
Sensor node 10:30 15 10:30 11 10:30 6 10:30 5
~ 10:45 12 10:45 11 10:45 8 10:45 6
\_/ Segment node 11:00 8 11:00 12 11:00 9 11:00 6
Attribute node 11:15 8 11:15 11 11:15 11 11:15 7
® 11:30 9 11:30 11 11:30 12 11:30 11
() Value node
- 11:45 7 11:45 8 11:45 10 11:45 12
12:00 6 12:00 7 12:% 8 12:00 14
N ™~ N TN
( FFlows_to» 1 —Flows_toP{ j—Flows_top{ 2 Flows_to—»| 3 —Flows_top FFlows_tow| —Flows_to»{ 4
N J N N
A A ~ A
Temp Temp Temp Temp
p P
‘ Low ) ‘ ngh ] { Low ) ngh LOW ) ‘ ngh ‘ Low /1 ngh )
[10;00-10;15) [10;‘1”5_11;00) [11: 45 12 15) [10: OO 11 45) [10 OO 11: 15) [11: 15 12:00) [10:00-11:30) [11:30-12:15)
[11:00-12:15) [12:00-12:15)

* |f we delete Sensor 2, we get a consecutive path
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Paths that are not CUSD or robust (or both)

e Also, maximal sub-a5-paths are Continuous paths
e Maximal sub-ay-paths are not robust

e Nevertheless, they may capture interesting situations, e.g., an event that occurs
simultaneously along a path of sensors

(] | —

a2

Backward &3

a5

i B

Qg
Co-Temporal oy

ag

10
Forward o1

I —

12

13 ———
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Sensor network Continuous path

Time Value Time Value Time Value Time Value
‘—River Segment 10:00 6 10:00 8 10:00 8 10:00 2
. Sensor 10:15 12 10:15 7 10:15 12 10:15 4
10:30 15 10:30 10 10:30 15 10:30 12
Sensor node 10:45 12 10:45 11 10:45 14 10:45 14
Y g 11:00 8 11:00 12 11:00 9 11:00 16
\/ Segment node 11:15 8 11:15 8 11:15 8 11:15 15
Attribute node 11:30 9 11:30 7 11:30 5 11:30 11
| Value node - . . ._
- » 1 — > ~Flows_topri 2" ——Flows_to—P 3 —Flows_top to»: 4
A v b &
Temp Temp Temp Temp
Low High Low High Low High Low High
[10:00-10:15) [10:15-11:00) [11:45-12:15) [10:00-11:45) [10:00-11:15) [11:15-12:00) [10:00-11:30) [11:30-12:15)
[11:00-12:15) [12:00-12:15)

e Red indicates a value of High for the variable Temperature
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Querying sensor networks

e We extend de T-GQL language to address sensor networks
e Goal: Querying for paths is a sensor network, or finding the set of relations
holding between every pair of consecutive sensors, i.e., the a—paths

e The variable being measured must be indicated
e Example: to find a path where the temperature value is high:

SELECT paths

MATCH (sl: Sensor), (s2: Sensor),
paths = alphaPath(( s1 ) -[: Flows *3..5] - > (s2),‘1", ‘10',

"Temperature’, ‘=’, ‘High’)

WHERE sl.id = 1;

e Inthiscase, ‘1’ and ‘10’ correspond tothe window query time
interval. The parameters " Temperature’, ‘=’, ‘High’
represent the condition Temperature = High
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Logical model: TGraph for sensor networks

7/2/24

]
[}
|
&y %,
value: . value:
Low Medrum High
interval: =
X -3)[4-6)
[3-4)[7-9) 67) {;-ll))[) )

Fooow
K value:
value: High
Medium interval:
interval: [1-3)[4-6)
[1-2)[3-4)[6-7) [3-10)

value:
value: High

intervak
interval:[5-6)  [1-2),[3-5)
[6-10)
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Logical model: TGraph for sensor networks

* Based on TGraph, we define the SNGraph (Sensor Network Temporal Graph)
* Astructure G(Ns, Na, Ny, E), Ns, Na, and Nv sets of nodes, denoted
Segment, Attribute, and Value nodes

* Sensor nodes: Segment nodes that ever contained a sensor
* |In Sensor nodes, title = ‘Sensor’; interval: the time when a sensor worked
®* Properties that do not change over time (static) may exist

* Segment (non - sensor) nodes do not contain the attribute interval

* An Attribute node represents a variable measured by the sensors
title property: the name of the variable; interval: its lifespan

* Value node
value property: the values registered by the sensors
interval: the period when the measure was valid

* Edges between Segment nodes represent the flow between two

segments; interval is the validity period of the edge
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Agenda

 Temporal Graphs in Transportation Networks
* Abstract graph model for sensor networks
* Paths in sensor networks
* Use case
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Use case: the loW project*®

Overview of the Scheldt
river, and the nine sensors @coasross
considered oo 0T
‘ 2es09x-SF-1066 Sl ol
a4 Zeslga-SE—qB—;LOéG 6. i
Beveren =¥ L "éf L An g S ‘
] zesZ4&SF—{99§ o) [ - 11> Mortsel
. . e zes28a-SF-1066-8°"""° N &
Figure obtained from el T ), S LN o
http://waterinfo.be B A0 i
H;;:égc-sr:-lose i - O A 2
rup02e-SF-1066 ¢ >

* https://www.internetofwater.be/en/what-is-internet-or-water/
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Use case: goals

e Problem: The river is influenced by the tidal streams at the North sea

e The river height rises and falls twice a day following the tidal rhythm

e During high tides, close to the shore the water flows in the opposite
direction with respect to the natural downstream flow of the river

e The salty sea water merges with the river’s fresh water, influencing its
salinity with an impact on the water quality, flora, and fauna of the region

e Sensors are used to monitor the river in real-time

e We focus on the conductivity of the water, which indicates the presence of
salt in the water: an increase of the content of salt => an increase of the
electrical conductivity of the water

e Hydrologists want to understand how far the salty waters coming from the
sea due to high tides, go into the river flow before dissolving into fresh
water: this can be captured by temporal paths
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Use case: goals

e We look for paths where the salty water starts to be detected when it
arrives at the station closest to the sea

e As we move farther from the sea, salinity arrives at the next station, where
it is first detected, and this repeats until it cannot be detected anymore,
since it dissolves at a certain point

e However, it may still be detected at the first sensor at the same time when it
vanishes completely at some point in the river

e |t follows that every interval is smaller than the previous one (i.e., at the
previous sensor)

e This pattern corresponds to an as-path

e |f an as-path is not found, if at least we find a Backward path, this will show
the spread of salinity and will let hydrologist know how far does salinity go
and in what time span

e We use T-GQL to find these paths

7/2/24 EBISS - 2024 - Padova - Italy 153



Use case: data preparation

e \We start with data exploration
e We can see two daily peaks, reflecting the tidal effect

— the height of these peaks increases from days 1 through 7 and decreases from
day 8 onward

20,000.0 1

15,000.0 4

10,000.0 1

5000.0

0.0 4

Q
1
o
o o

e We use categorical variables => we must set the category boundaries
e Problem: cannot use a unique set of boundaries, let us see why
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Use case: data preparation

Left: global statistics (all sensors considered)
Right: statistics for each sensor

e We cannot use the same category boundaries for categorization

e Closer to the sea, conductivity is much higher
Sea 2
e median ===+ Global q75
20,000 A % mean 20,000 4 == Global g25
18,000 A 18,000 A —
16,000
16,0001 14,000 ,l‘ ]
.................................................................. L_j
14,000 A 12,000 -
12,000 A 10,000
8000 <
10,000 A
6000 o
8,000 A 4000 A l
6,000 2000 '__9.______ﬂ_____,__:,___-T_' __________________________
o] — 8 o
4,000 A i i i i i i i
(e} © (=] O (o] (o] (e} e} O
O (e} O O O O (o) [le) (=)
2,000 = ] S = = = = = S
. | 5 0% & 05 2 & 2 o 4
O © © %)) x [%2] ©
EC25 2 8 8 8 Zu; 8 % 2 g
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Use case: data preparation

e Using global thresholds,
all values will be High for
stations close to the sea
(at the top)

e We must use global AND
local thresholds

e Fourth station from the
top (in green): oscillate
around the 0.75 quartile,
using this value as
threshold would produce
many small intervals for
the High category

zes01a-SF-1066
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Use case: building the graph

e Granularity is relevant
e We create four graphs:
* G10: Global thresholds, granularity 10 min
* G60: Global thresholds, granularity 60 min
* L10: Local thresholds, Granularity 10 min
* L60: Local thresholds, granularity 60 min
* For every station that measures the ec variable (electric conductivity), we
create an attribute node and connect it to its corresponding sensor node
 For every category associated with that station (0,1,2 stand for low,
medium and high), a value node connected to the attribute node
 Each value node labeled 0, 1 and 2 will contain a sequence of time
intervals indicating when ec falls in the category
e EC25: parameter normalized to 25 °C
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Use case: building the graph

e Neodjgraph for G60

zes01a-SF-
1066

z2es09x-SF-
1066

zes07g-SF-B-

1066 lgflowsTo

<f|owsTo—( \/mﬂowsTo-’
N

flowsTo B
\/’ \ -
\ ,,,/ﬂ-flowsTo——{ \>4ﬂowsTo
\
ec "/

flowsTo

zes07g-SF-O-
1066
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Use case: flat graph representation

1066 (= —— }—— +——} it it i i i i t—t 2€501a-5F-1066 {frmmt et et f—— } 4 i 4 + H + + i t—t
-t 0 1 =2 = 0 1 2

1066  +—t +— f—t +~+ | +— #—t+—t —t—t————————— —t 2e5079-SF-0-1066 - (= +— H— = #— t— — H— — — ————t — — — — —

1066 { =+~ +— +— +— —t —t ———————— 2es07g-SF-B-1066 -+t +=—t =t +—t H— +— F— +— t— +— —t——t — — — —
zzzzzz -SF-1066 - =t = = = =~~~ =~ —— = = H 2es09x-SF-1066 < = = = = =~~~ =+~ ~ =+ = =~ = H H

t

5555555555555555555555555555
TUP02€-SF-1066 ! ] fommtme] - omm e e

||||||||||||||||||||
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
o =3 o

e Top: sensors closer to the sea

e Flow goes from bottom to top

e Left: intervals for G60; Right: intervals for G10

e Farther from the sea, less red intervals

e Due to the finer granularity, there are more intervals for each station in

G10 than in G60.
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7/2/24

Analysis — Finding paths
Finding Paths in G60, global thresholds with 1-hour granularity

How far does salinity go before being dissolved in fresh water?

We start with G60 and look for ac-paths, which would show the
dissolution effect along the stations

If we do not find such a path, we look for a backward path, which would
show how salinity spreads along the river

Some stations, like zes07g-SF-0O-1066 and zes07g-SF-B-1066 are placed at
the same location, likely to find co-temporal paths

Water rises and falls twice a day; We capture this with a time window of
about twelve hours, try to find a path within this window

If a pathis found in G60, verify that it is also present in a finer granularity
graph, G10

Finally check if we find the path in L60 (same granularity with local
thresholds)
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Analysis — Finding paths
* Finding Paths in G60

* We want to find as-paths with High conductivity, that is, ec= 2
* We know that a.-paths are closed under sensor deletion (CUSD)
* First pick two stations s; and s;, and discard the others
* If the relation between s;, s; is not as, we know an as-path will not be found
* Otherwise, we keep adding a station until we find a relation different
from as or until there are no more stations with ec = 2

We first consider sensors s, and s,, discard the others

SELECT paths
MATCH (sl:Sensor), (sZ2:Sensor),
paths = alphaPath((sl)<-[:flowsTo*2]-(s2),
‘2022-04-01 02:00", '2022-04-02 11:00",‘ec’,’'=",'2")
WHERE sl.Name = ’"zes07g-SF-0-1066";
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Analysis — Finding paths
* Finding Paths in G60

* The query finds the paths of the kinds that corresponds to the patterns
found, in this case, it finds an a4-path

{
"path": [{
"name": "zes09x - SF -1066", --Sensor S4
"value": "2",
"attribute": "ec"},
{
"name": "zes07g - SF -0 -1066", -- Sensor S2
"value": "2",
"attribute": "ec"}],
"intervals": [

"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 03:00 - 2022-04-02 07:00"

1,
"alphas": ["alpha5"] - Relation between SZ2 and S4
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Analysis — Finding paths

* Finding Paths in G60

zes01la-SF-1066
1 2
zes07g-SF-0-1066 - t 1
zes07g-SF-B-1066
zes09x-SF-1066 - t 1
zes19a-SF-B-1066 -
zes24a-SF-1066
zes28a-SF-1066 -
zes39c¢-SF-1066
rup02e-SF-1066 -
rrrrrrrrrrrrrrrr1rr1rr1r 1 1rr1r1r1rr1T 11Tt 1T T 1T tT1T 1T T Pt T T 1T P 1 T T VP T1TrT
o o o o o o o o o o o o o o
< < @ < @ @ < e 9 9 9 9 9 °
(8] s} o — N m < n © ~ [ee) [e)] o —
~N ~N IS S o o o o o ) o o — —
< < < < < < < < < < < < < <
< < < < < < < < < < < < < <
—~ —~ (o] (o] N N N N o~ o~ o~ o~ o~ o~
S S o o o o o o o o o o o o
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Analysis — Finding paths

* Now we add s;
{

"path": [{
"name": "zes09x - SF -10606", -- 5S4
"value": "2",
"attribute": "ec"},

{ "name": "zesO7g - SF -B -1066", —-- S3
"value": "2",
"attribute": "ec"},

{"name": "zes07g - SF -0 -1066", -- S2
"value": "2",
"attribute": "ec"}

1,
"intervals": [

"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 03:00 - 2022-04-02 07:00" 17,

"alphas": ["alpha5", "alpha7"] - alpha7 between S2 & S3, alphab
between S3 & S4}
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Analysis — Finding paths

* We obtain and a; s-path => stop looking for an as-path. Note that s, and s; are at
the same physical location

zes01a-SF-1066
1 =2
zes07g-SF-0-1066 -
zes07g-SF-B-1066 -
zes09x-SF-1066
zes19a-SF-B-1066 -
zes24a-SF-1066 -
zes28a-SF-1066 -
zes39c-SF-1066
rup02e-SF-1066 -
rrrrrrrrrrrrvrrrrvrirvrrrrorrrrrrrrirrrririrrrrrirv7rrrririrrrvirrTrid
o o o o o o o o o o o =) o o
N m =) — I m < N © ~ ) ) S —
o o o o o o o o o o o o — —
< < < < < < < < < < < < < <
o o o o o =} S} o o o =) =) =) o
— — o~ o~ o~ o~ o~ o (o] (o] (o] o~ o~ o~
o o o o o o o o o o o o o o
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Analysis — Finding paths

 We continue looking for a backward path (we add s1)

{
"path": [{
"name": "zes09x - SF -10060", -- 5S4
"value": "2",
"attribute": "ec"},
{ ..
o}
"name": "zes0la - SF -1066", —-- Sl
"value": "2",
"attribute": "ec"}
1
"intervals": |

"2022-04-01 23:00
"2022-04-02 02:00
"2022-04-02 02:00
"2022-04-02 03:00
] 14

"alphas": ["alpha5", "alpha7", "alpha5"]

}
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2022-04-02 10:00",
2022-04-02 08:00",
2022-04-02 08:00",
2022-04-02 07:00"
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Analysis — Finding paths

* We can see the dissolution effect.
* The same is obtained with G10 => We do not need the 10-minute granularity

zes01la-SF-1066 -
=t 0 1 e 2
zes07g-SF-0-1066 -
zes07g-SF-B-1066 -
zes09x-SF-1066 -
zes19a-SF-B-1066
zes24a-SF-1066
zes28a-SF-1066 —
zes39¢-SF-1066
rup02e-SF-1066
rrrrrrrrrrrorrrrvrrirrrrrrrrrrirrrrrrrrrrrri7rrirrrrrrrrirnTrid
o o o o o o o o o o o o o o
N ™M =} — I m < 0 © ~ © o) S —
N N S o =) o o o o o o o — —
< < < < < < < < < < < < < <
o =) =) =) =) o o S o o o =} =} o
— — o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~
o o o o o o o o o o o o o o
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Analysis — Finding paths

* Finding Paths in L60, local thresholds with 1-hour granularity

{
"path": [{
"name": "zes39¢c - SF -10060",
"}I
{ "mame": "zes0la - SF -1066",
"value": "2",
"attribute": "ec"}
:|I
"intervals": [

"2022-04-02 03:00 - 2022-04-02 04:00",

"2022-04-02 04:00 - 2022-04-02 07:00"7,
"alphas":["alpha7",6"alpha7",6"alpha7","alpha3", "alpha6",6 "alpha8",6"
alpha6"]

}
o q
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7/2/24

Analysis — Finding paths

There are two paths (the last two sensors in different branches)
L60 does not show dissolution effect, but shows propagation

2e501a-SF-1066 i —
== 0 —t— 2
zes07g-SF-0-1066
zes07g-SF-B-1066 N B |
zes09x-SF-1066
zes19a-SF-B-1066 - —
zes24a-SF-1066 -
zes28a-SF-1066 - —
zes39c-SF-1066
rup02e-SF-1066 -
rrrrrrrrrrrvrrrrrrrrorrrrrrrrvrrrrrrirrrrrirvr7rrrrrirrrrrTrid
o o o o o o o o o o o o o o
e e e e e e < < 9 < e e e e
N M S — N m < ) © ~ ) ) S —
o~ o~ o o o o o o o o o o — —~
< < < < < < < < < < < < < <
< < < < Q < < < < < < < < <
— — o~ o~ o~ o~ o~ o o o~ o~ o~ o~ o~
o o o o o o o o o o o o o o
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Agenda

* Introduction and motivation
 Temporal Graph Databases

* Implementation

* Temporal Graphs in Sensor Networks
* Conclusion
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Conclusion

* A theoretical framework for paths in temporal graphs
 Data model
* Query language
» Characterization of temporal paths based on Allen’s algebra
* High number of combinations
* Properties to reduce the number of interesting paths
* Extend this theory to sensor networks
* Framework applied to a real-world use case
e Future work:
 How can we efficiently manage the time series
e Use time series databases?
e Other kinds of networks / use cases

* C. Gutiérrez, R. Angles. A Survey on Graph Database Models ACM Computing Surveys, 2008
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