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Main characteristic of (big) data
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A world of interrelated information 
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Fraud detection   

https://neo4j.com/whitepapers/top-ten-use-cases-graph-database-technology/



A world of interrelated information 
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Real-time recommendation

https://neo4j.com/whitepapers/top-ten-use-cases-graph-database-technology/



A world of interrelated information
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Anti-money laundering

https://neo4j.com/whitepapers/top-ten-use-cases-graph-database-technology/



• A social network
• Persons, friendships, 

photos, locations, apps, 
pages, ads, interests, 
age range, etc.
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Modeling data connectedness



How do we deal with these data?
Is traditional DB technology enough?
We must address:

• Connectedness 
• Unstructured data
• High Volumes
• Real-time

NoSQL technologies

Problems & Questions



Types of NoSQL databases
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A history of database models (A. Mendelzon)



The Golden age of GDB Models
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Kuper and Vardi 1984:  
generalize the relational, 
hierarchical and network 
models



* C. Gutiérrez, R. Angles. A Survey on Graph Database Models ACM Computing Surveys, 2008 

Graph database models*
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• Database model: three components: a set of data structure types, a set of 
operators or inference rules, and a set of integrity rules (Codd, 1980)

• Data and/or the schema  represented by graphs, hypergraphs, hypernodes 
Node -> entity,  edge -> relationship between entities,  property ->  feature  

• Data manipulation  expressed by graph transformations, or   operations on 
graph features: paths, neighborhoods, subgraphs, patterns, connectivity, graph 
statistics (e.g., diameter, centrality, etc.)

• Integrity constraints enforce data consistency,   schema-instance consistency, 
identity & referential integrity,  functional dependencies. E.g.: labels w/ unique 
names, constraints on nodes, domain and range of properties 



* Hogan et al. Knowledge Graphs, ArXiv:2003.02320v6, 2021.

Knowledge graphs*
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• Many (sometimes conflicting) definitions,   technical and general

• Knowledge graph: a graph of data (or data graph) intended to accumulate and 
convey knowledge of the real world, whose nodes represent entities of 
interest and whose edges represent relations between these entities

• The graph of data conforms to a graph-based data model (e.g., a directed 
edge-labelled graph, a property graph, etc)

• Knowledge: something that is known, which may be accumulated from 
external sources, or extracted from the KG itself
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Two graph data models

• Perry, M. Introduction to RDF Graph for Oracle Database 19c. Architecture and Overview (2019)



RDF graph data model
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• Originally deviced to 
represent metadata

• Represents resources and 
relations between
resources

• An RDF graph: a collection
of (subject, predicate, 
object) triples

• Schema and instances
represented using the
same formalism
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* Papadaki et al. A Brief Survey of Methods for Analytics over RDF Knowledge Graphs, 2023

RDF Knowledge Graphs

SPARQL



* R. Angles. The Property Graph Database Model. AMW 2018, Cali, Colombia

The property graph data model*
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• Informally, a  directed labelled multigraph where each node or edge 
associated with a set (possibly empty) of property-value pairs

• A node represents an entity, an edge represents a relationship between 
entities,   a property represents a specific feature of an entity or relationship  



The property graph data model*
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• First formal definition (Angles, 2018)



The property graph data model*
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• Schema



Using both models for analytics (example)
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• Perry, M. Introduction to RDF Graph for Oracle Database 19c. Architecture and Overview (2019)



Graph query languages*
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• https://www.gqlstandards.org/what-is-a-gql-standard

https://www.gqlstandards.org/what-is-a-gql-standard


GQL *  
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* Francis et al.. A Researcher's Digest of GQL, ICDT 2023
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Temporal Databases
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• Represent and manage time-varying information  
• Several ways to interpret the time frame  

• Valid time (VT): Time when a record is valid in the  real world
• E.g.,  captures when a  salary was paid to an employee
• Supplied by the user

• Transaction time (TT): Time when a fact is stored in the DB
• Begins at the time when a record is inserted or updated, and ends 

when the record  is deleted or updated
• Generated by the database system

• Bitemporal time (BT): Valid  and transaction times combined 
• Lifespan (LS): Time when an object or relationship exists, 

• e.g.,  duration of a project
• Granularity represents the minimal division of the timeline 



Temporal Databases
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• DBMSs provide limited support for dealing with time-varying data
• Many of them only provide data types for encoding dates or timestamps
• SQL standard: temporal support,  partially implemented in most DBMSs
• SQL must be used for querying time-varying data, not an easy task
• Example: a temporal database:

• FromDate and ToDate: Indicate when the information in a row



Operations in Temporal Databases
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• Given the table Affiliation obtain the periods of time when an employee has 
worked for the company, independently of the department

• This is called a temporal projection
• Not easy to express in SQL

• Note: first and last two rows are value equivalent, equal on all their 
columns except for FromDate and ToDate

• Result must be coalesced: combining several value-equivalent rows into 
one provided that their time periods overlap



Operations in Temporal Databases
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• Given the table Affiliation obtain the periods of time when an employee has 
worked for the company, independently of the department

• Non coalesced result

• Coalesced result

• Coalescing is an expensive operation, requires expert SQL knowledge
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Temporal Graph Databases
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• Typically, graphs assumed to be static (non-temporal)
• Changes may occur in a property graph as the world they represent evolves 

across time

1. Phone call network.  Each vertex can represent a person (or a phone #),  an 
edge (u, v, t, d) tells that u called v at time t, with duration d; new nodes and 
edges are added frequently, and  the properties of u or v may change over 
time

2. Social networks. Each vertex models a person,  organization, etc.;  an edge 
(u, v, t, d) represents a relationship between u and v (e.g., u follows v, u is a 
friend of v) at time t which lasts  d

Peter Mary

d = 3 years Start = 2021

Follows



Temporal Graph Databases
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3. Transportation networks. Each vertex represents a location, an edge (u, v, t, 
d)  a road segment from u to v, existing since time t, and whose interval of 
existence is d

4. Travel schedules. Each vertex in a graph represents a location, and an edge 
(u, v, t, d) is a trip (flight, bus, etc.) from u to v departing at time t, whose 
duration is d

Temporal graph literature is limited
• Addresses mostly cases 1 (without changes in properties)  and 4
• Cases 2 and 3 require an approach over PGs along the lines of the temporal 

database theory
• We study how temporal databases concepts can be applied to graph 

databases,  to model, store, and query temporal graphs



A Graph Database
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A (Simplified) Temporal Graph Database
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Temporal graph data models

7/2/24 39EBISS - 2024 - Padova - Italy

• We classify data models in the literature of temporal graphs as:
• Duration-labeled temporal graphs (DLTG) 
• Interval-labeled temporal graphs (ILTG)
• Snapshot-based temporal graphs (SBTG)



Temporal graph data models
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• We classify data models in the literature of temporal graphs as:
• Duration-labeled temporal graphs (DLTG) 

• Studied by Wu et al. *
• A node represented as a string (nodes not 

annotated with properties), and the edges 
labeled with a value representing the 
duration of the  relationship (in the figure, 
duration λ = 1

• Each edge e = (u, v, t, λ)  represents a 
relationship from a vertex u to another 
vertex v starting at  time t with a duration λ

* Wu et al. Path problems in temporal graphs. Proic. VLDB, 2014,  
Hangzhou, China. http://www.vldb.org/pvldb/vol7/p721-wu. 

http://www.vldb.org/pvldb/vol7/p721-wu


Temporal graph data models
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• We classify data models in the literature of temporal graphs as:
• Duration-labeled temporal graphs (DLTG) 

• Four different forms of 'shortest' paths 
called  minimum temporal paths:  

1. Earliest-arrival path path: earliest arrival 
time  from a source x to a target y

2. Latest-departure path: latest departure 
time starting from x in order to reach y at  
a given time

3. Fastest path:  goes from x to y in the 
minimum elapsed time 

4. Shortest path: shortest from x to y in terms 
of  number of hops

* Wu et al. Path problems in temporal graphs. Proic. VLDB, 2014,  
Hangzhou, China. http://www.vldb.org/pvldb/vol7/p721-wu. 

http://www.vldb.org/pvldb/vol7/p721-wu


Temporal graph data models
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• We classify data models in the literature of temporal graphs as:
• Interval-labeled temporal graphs (ILTG): A temporal label is defined over 

the database objects  

• Label over database objects
• Studied in Campos et al.*
• Defined as a graph where each edge e = (u,

v, I) represents a relationship from a vertex
u to another vertex v, valid during a closed-
open interval I= [t_s,t_e)

• Also nodes and properties are annotated
with their validity intervals

* Campos, A. et al  Towards temporal graph databases. Proceedings of the AMW 2016, Panama City, Panama.



Temporal graph data models
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• We classify data models in the literature of temporal graphs as:
• Snapshot temporal graphs*: defined as a sequence of snapshots

• A temporal graph G[ti, tj ] in a time interval
[ti , tj ], is a sequence {Gti, Gti+1, …, Gtj } 
of graph snapshots

* K. Semertzidis and E. Pitoura, “Top-k durable graph pattern queries on temporal graphs,” IEEE Trans. Knowl. Data Eng.,



Temporal graph data models
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• Other work:

• Byun et al. ChronoGraph: Enabling temporal graph traversals for efficient 
information difusion analysis over time. IEEE Trans. Knowl. Data Eng., 
32(3):424--437, 2020. https://doi.org/10.1109/TKDE.2019.2891565

• Byun, J. (2022). Enabling time-centric computation for efficient temporal
graph traversals from multiple sources. IEEE Trans. Knowl. Data Eng.,
34 (4), 1751–1762.  https://doi.org/10.1109/TKDE.2020.3005672

• C. Cattuto, A. Panisson, and M. Quaggiotto, “Representing time dependent
graphs in Neo4j.” https://github.com/SocioPatterns/neo4j-dynagraph/wiki/
Representing-time-dependent-graphs-in-Neo4j, 2013.

• T. Johnson, Y. Kanza, L. V. S. Lakshmanan, and V. Shkapenyuk, “Nepal: a path 
query language for communication networks,”   NDA@SIGMOD 2016 

https://doi.org/10.1109/TKDE.2019.2891565
https://doi.org/10.1109/TKDE.2020.3005672


Agenda

7/2/24 45EBISS - 2024 - Padova - Italy

• Temporal Graph Databases  
• Temporal graph data models
• An abstract data model 
• The T-GQL query language 
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An abstract model for a temporal networks

7/2/24 47EBISS - 2024 - Padova - Italy

• Data structure
• A directed property graph G(N, E)   N, E, nodes and directed edges
• Nodes are labeled with the type of entity they represent
• Interval represents lifespan 
• Attributes: static  and temporal
• Names of the relationships are associated with a set of intervals
• A special value Now is used to tell that the node is valid at the current time

• Also a set of constraints



An abstract model for a temporal networks
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• Constraints
• All edges with the same label (i.e, representing the same relationship

type), between the same pair of nodes, are coalesced
• The intersection of the nodes’ intervals must include their edge intervals  
• A node’s interval includes the union of the intervals of a temporal attribute  
• Intervals are time-ordered, maximal, and non-overlapping



Querying the abstract model
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• Query 1 List the friends of Wei Xu.  Non temporal. Answer: Jay Bedi, Sandra 
Perez, the persons directly connected to Wei via a Friend relation 

• Query 2 Who where the friends of Wei Xu in 2021? Answer: Sandra Perez, Jay  

• Query 3 Where did the people who where friends of Kea  between 2011 and 
2013 live at that time? Only the  relationship with Wei is valid in [2011-2013). 
Answer:  Mumbai

• Query 4 Who were friends of Kea while she was living in Buenos Aires? Kea has 
been living in Buenos Aires since 2016, thus, any person that was a friend of 
Kea at any instant of the interval in [2016-Now). Answer:  Wei and Peter 

• Query 5 Where did Jay live when he and Sandra followed the same brands? Jay 
in [2020, Now) and Sandra in [2019,2023) followed LG.  Intersection:  [2020-
2023). Answer:   Mumbai



Querying the abstract model
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Query 2: 
Friends of Wei 
Xu in 2021



Querying the abstract model
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Query 3: 
Where did the 
people who 
where friends 
of Kea  
between 2011 
and 2013 live?



Temporal paths
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“When have Kea, Wei, Jay, Peter and Luca been friends  simultaneously?”:
Captured by the notion of continuous path*

Left: two Continuous paths:  (n1, n2, n3, n4; friend; [2, 3]); (n1, n5, n4; friend; 
[4, 7])  ( I =  In1 ∩ In2 ∩ … ∩ Ink )
Center: a Pairwise Continuous path (overlapping intervals in the path)
Right:  a Consecutive path (disjoint consecutive intervals)
* Rizzolo, F. and  Vaisman, A., “Temporal XML: Modeling, indexing, and query processing,” VLDB Journal, 2008

n1
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Temporal paths
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Questions

• Why did we come up with these paths?
• Are there any other interesting paths? How many? 
• Can we characterize temporal paths in some way?

n1
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Temporal paths
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• Let G(N, E) be a TNG. Let (N, r ) ⊆ G(N, E) be a graph where N, is a finite set of 
nodes,  r is a relationship (labeled r ), r ⊆ N x N.

• Let e be an edge in (N, r ),  an interval I for e is maximal when for any interval 
Iʹ, we have that I ⊆ Iʹ  =>  I = Iʹ

• Maximal intervals for the Friend relationship



Temporal path definition
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• (N, r)  a temporal network and   ∝ a binary relation on temporal intervals.
• A temporal ∝-path in (N, r ) is a structure (γ, I),  where

1. γ is a path in (N, r);
2. I is a sequence of intervals I1, …, Ik−1;
3. Ij is a maximal interval for every ej (nj , nj+1)
4. ∝(Ij , Ij +1) holds between every pair of consecutive intervals

• Replacing condition (3) by:

3. Ij is an interval (not necessarily maximal) for ej (nj , nj+1), for j = 1, …, k − 1;

We have a temporal sub-∝-path in (N, r)  

• Where does this ∝ come from? 
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• In 1983, James F. Allen described the possible relationships between two 
intervals on the real line (the timeline)  

• Let A and  B be such intervals. We denote their  start and end points by 
s(A), s(B), e(A)  and  e(B), respectively

• So, we have A=[s(A),e(A)) and B=[s(B),e(B))
• The 13 possible arrangements of A and B, as given by Allen:

Allen’s Algebra



Allen’s Algebra
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• We write αi(A,B), for i = 1, ..., 13, whenever the intervals A and B are in 
the relationships as depicted. We call α1, . . . , α13 the base relations of 
the Allen interval algebra.



Allen’s Algebra

7/2/24 58EBISS - 2024 - Padova - Italy

• Based on these thirteen base relations α1, . . . , α13, Allen defined an 
interval algebra which we denote 𝓐

• The base relations α1, . . . , α13 are exhaustive and pairwise disjoint, i.e., 
for any two given intervals, exactly one of the thirteen relations holds 

• Also, the complement (or negation) of one of the αi corresponds to the 
union (or disjunction) of the twelve remaining αj (j <> i)
• For example !α1 = α2∪ α3 … ∪ α13

• We denote α1 ∪ α2 ∪ α3 ∪ α4 ∪ α5(A, B),  as α1→5(A, B) or   α1,2,3,4,5(A, B)



Allen’s Algebra
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• The algebra 𝓐 includes the operations inverse (denoted . −1), intersection 
(denoted ∩)   and composition (denoted ◦) :
• Inverse: α −1 (A, B) if and only if α(B, A);
• Intersection: α ∩ β (A, B) if and only if α(A, B) and β(A, B); and
• Composition: α ◦ β (A, C) if and only if there exists an interval B such that 

α (A,B) and β(B, C)  
A 

B                    
C

• The inverse relation, αi
−1, in our notation, verifies that

αi
−1 = α14−i for i = 1, 2, . . . , 13

https://ics.uci.edu/~alspaugh/cls/shr/allen.html
Krokhin, A, Jeavons, P.  &  Jonsson, P. (2003) : Reasoning about temporal relations : the maximal tractable 
subalgebras of Allen’s interval algebra., Journal of the ACM., 50 (5). pp. 591-640.

α12(AB)  ◦ α12 (BC) = α13 (A C) 
(α12 not transitive) 

https://ics.uci.edu/~alspaugh/cls/shr/allen.html


Allen’s Algebra
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• Any element of the Allen algebra 𝓐 can be written as a
as union of its base relations 

• Since compositions and negations can be written as unions   and 
intersections, they can be expressed using negation and union

• Given that there are the thirteen base relations α1, . . . , α13, 213 = 8192 
unions are possible, and this is in fact the cardinality of 𝓐

• Question: Are all of combinations useful? How can we prune this set?
• We will study (later) this over a real-world use case 



Allen’s algebra-based α-paths
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• γ (A2, B2, C2) is an α9-path because α9(A2, B2) and α9(B2, C2)  hold

• γ (A3, B3, C2) is an α7 ∪ α1-path because α7(A3, B3) and α1(B3, C2)  
hold = >  an α1,7-path 



Allen’s algebra-based α-paths
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• γ (A2, B2, C2) is an α9-path because α9(A2, B2) and α9(B2, C2)  hold

• γ (A3, B3, C2) is an α7 ∪ α1-path because α7(A3, B3) and α1(B3, C2)  
hold = >  an α1,7-path 

• If A = B = C2 , we have a sub- α7-path  but NOT an α7-path 



Examples of α-paths
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• Query 6.  List all the α-paths between Kea and Luca during the interval 
[2015-2021)

• Answer:
• An α2,9,10-path whose α relations are: α9 (A2, B2), α2(B2, C1),  α11(C1, D1)
• An α4,9-path path whose α relations are α9(A2, B2), α9(B2, C2), α4(C2, D1)



Classification of paths
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• The base Allen relations can be divided into three groups, based on when
the second interval in the relation starts, with respect to the first interval
• Backward, containing the relations α1, α2 , α3, α4 , α5
• Co-Temporal, containing the relations α6 α7 , α8
• Forward, containing the relations α9, α10 , α11, α12 , α13



Classification of paths
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• Another classification depends on the intersections
• Intersecting, contains the relations α1, α2 , α3, α4 , α5 , α6 , α7, α8 , α9 ,

α10 , α11
• Non-Intersecting, contains the relations α1, α2 , α12, α13



Problem
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• Define our (intuitive) paths in terms of  Allen’s algebra
• Define other useful paths based on this algebra



Continuous path (Allen’s intervals)
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• Given a Temporal Network (N, r ), a continuous path (cp) with interval T from 
node n1 to node nk , traversing a relationship r , is a structure ((γ, I), T) where:

• (γ ,I) is an α 3→11-path.
• T = ∩ T i=1, k Ii
• T  != ∅.

As we can see, in this kind of paths, all relations belong to the Intersecting group 
either Forward, Backward or Co-Temporal.



Continuous path queries
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Query 7. Find the continuous paths between Kea Sanders-Upcott and Luca Mori 
with a minimum length of 3 and a maximum length of 4

• γ = (Kea, Wei, Jay, Peter, Luca)
• I = (A2, B2, C 2, D1)
• a9(A2, B2), α9(B2, C2),  α10(C2, D1) => a9,10 -path 
• T = [2017,2018)

Query 8. Find the continuous paths 
between   Kea Sanders-Upcott and 
Peter Norton between [2021-Now].

• γ = (Kea, Wei, Jay, Peter)
• I = (A3, B3, C 3)
• I = α 7(A3, B3), α6(B3, C3) => a6,7 -path 
• T = [2021, 2022) 
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Given a Temporal Network (N, r ), a pairwise continuous path (pcp) traversing a 
relationship r is an  α 3→11-path

Query 9 Find the pairwise continuous paths between Kea Sanders-Upcott and Peter 
Norton, with a minimum length of two and a maximum length of three.

• γ = (Kea, Wei, Jay, Peter)
• I = α 11(A1, B1), α11(B1, C1) [2011,2013), [2012,2015),[2014, 2016) 
• I = α 9(A2, B2), α9(B2, C2) [2015,2020), [2016,2019),[2017, 2018) 
• I = α 7(A3, B3), α6(B3, C3)  [2021,Now], [2022,Now],[2021, 2022) 
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Given a Temporal Network (N, r ), a consecutive path (pcp) traversing a relationship 
r is an  α13-path. Can be forward, backward or co-temporal.

• Used for scheduling
• Example
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Query 10 How can I go from London (LHR) to Bariloche (BRC) arriving as early as 
possible? => earliest arrival path query ‚ => (LHR, GRU, BRC)
Query 11 How can I arrive in  BRC departing from LHR as late as possible and 
arriving before July 8th at 8 pm? => latest departure path query
(LHR, EZE, BRC)

The two options are  
consecutive paths (α13-paths)
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• Temporal Graph Databases  
• Temporal graph data models
• An abstract data model
• The T-GQL query language 
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• Defined over the abstract model
• Based on Cypher, Neo4j’s high-level query language
• Cypher's formal semantics can be found in * 
• We assume functions  compute paths (cPath, etc).
• Typical SELECT-MATCH-WHERE form 
• SELECT projects variables defined in the MATCH clause (aliases allowed)
• MATCH clause may contain one or more patterns  and function calls
• A T-GQL  query returns  a temporal graph. Can be modified by the SNAPSHOT

operator, which returns a non-temporal graph  

* Francis et al.  Cypher: An Evolving Query Language for Property Graphs.  SIGMOD Conference 2018, 
Houston, TX, USA, June 10-15, 2018.
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• “Name of the friends of the friends of Wei Xu”.

SELECT p2.Name AS friend_name
MATCH (p1:Person)-[:Friend*2]->(p2:Person)
WHERE p1.Name = ‘Wei Xu’

To list the three paths  in the answer we write:

SELECT *
MATCH (p1:Person)-[:Friend*2]->(p2:Person)
WHERE p1.Name = ‘Wei Xu’



T-GQL by Example – Temporal operators
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• SNAPSHOT:  Returns the state of the graph at a certain point in time.  Yields   a non-
temporal graph

• “Who were friends of  Wei Xu in 2018?” 

SELECT p2.Name AS friend_name
MATCH (p1:Person) - [:Friend] -> (p2:Person)
WHERE p1.Name = 'Wei Xu'
SNAPSHOT '2018'



T-GQL by Example – Temporal operators
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• BETWEEN: Computes the intersection of the graph intervals with a given interval  
Exactly one interval is allowed. The granularity of both intervals must be the same

• “Where did people who where friends of Kea between 2011 and 2013 live at that 
time?” 

SELECT c.Name
MATCH (p1:Person) - [:Friend] -> (p2:Person),

(p2) - [:LivedIn] -> (c:City)
WHERE p1.Name = ‘Kea Sanders-Upcott’
BETWEEN ’2011’ and ’2013’

The only Friend relationship valid during the interval was Wei Xu, so the query returns Mumbai, the 
city where Wei lived since 2001.



T-GQL by Example – Temporal operators
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• WHEN: Expresses parallel-period queries. Function calls not allowed in inner 
queries.

• “Who were friends of Kea while she was living in Buenos Aires?”

SELECT p2.Name AS friend_name
MATCH (p1:Person) - [:Friend] -> (p2:Person)
WHERE p1.Name = ‘Kea Sanders-Upcott’
WHEN

MATCH (p1) - [e:LivedIn] -> (c:City)
WHERE c.Name = ’Buenos Aires’

Kea lived in  Buenos Aires between [2016-Now],  thus, any person who was a friend of Kea at  any 
instant of that interval would be in the result (in this case, Wei and Peter).



T-GQL by Example – Temporal operators
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• WHEN: Expresses parallel-period queries. Function calls not allowed in inner 
queries.

• “Where did Jay live when he and Sandra followed the same brands?”

SELECT c.Name as city, b1.Name as brand
MATCH (p1:Person) - [:LivedIn] -> (c:City),

(p1) - [:Fan] -> (b1:Brand)
WHERE p1.Name = ‘Jay Bedi’
WHEN

MATCH (p2:Person) - [f:Fan] -> (b2:Brand)
WHERE p2.Name = ’Sandra Perez’ AND b1.Name = b2.Name

Jay and Sandra followed LG together between 2020 and 2023. In this interval, Jay 
lived in Mumbai and Sandra in Paris. So, (Mumbai, LG) is the answer to the query.



T-GQL: Continuous Path queries
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• “Compute the friends of the friends of each person, and the period such that the 
relationship holds continuously through all the path.”

SELECT path
MATCH (n:Person), 

path = cPath((n)-[:Friend*2] -> (:Person)) 

The modifiers  SKIP and  LIMIT can be used, as in Cypher, to get a specific path or a 
range.

SELECT path
MATCH (n:Person), 

path = cPath((n)-[:Friend*2] -> (:Person)) 
SKIP 2
LIMIT 1



T-GQL: Continuous path queries
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• Find the continuous paths between Kea Sanders-Upcott and Luca Mori with a 
minimum length of  three and a maximum length of four.

SELECT paths
MATCH (p1:Person), (p2:Person),

paths = cPath((p1) - [:Friend*3..4] -> (p2))
WHERE p1.Name = ‘Kea Sanders-Upcott’ AND p2.Name = ‘Luca Mori’

• The  cPath function computes the continuous path 



T-GQL: Continuous path queries
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• Find the continuous paths between Kea Sanders-Upcott and Luca Mori with a 
minimum length of  three and a maximum length of four in the interval [2017,2018). 

SELECT paths
MATCH (p1:Person), (p2:Person),

paths = cPath((p1) - [:Friend*3..4] -> (p2), ‘2017', ‘2018') 
WHERE p1.Name = ‘Kea Sanders-Upcott’ AND p2.Name = ‘Luca Mori’

• Intermediate results of a query  can be filtered by a user-provided interval  
W that  filters out the paths whose interval does not intersect with W

• The result is a single path of length four (the other possible path, with  
length one, is discarded), with interval [2017, 2018).
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[2017, 2018)

[2017, 2018)

[2017, 2018)

[2017, 2018)

T-GQL: Continuous path queries

CPs  between
Kea Sanders-Upcott
and Luca Mori with 
3 <= length <=4



T-GQL: Continuous path queries
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• Find the names of the persons such that there is a continuous path of length 2 or 3 
from them to Peter Norton.

SELECT p1.Name
MATCH (p1:Person), (p2:Person)
WHERE p2.Name = ’Peter Norton’ AND

cPath((p1) - [:Friend*2..3] -> (p2))

• The  cPath function is overloaded  to  return a Boolean value
• In this case the function call is  in the WHERE clause (NOT in the SELECT)



T-GQL: Pairwise Continuous path queries
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• Find the pairwise continuous paths between Kea Sanders-Upcott and Peter Norton 
with a minimum length of two and a maximum length of three.

SELECT paths
MATCH (p1:Person), (p2:Person),

paths = pairCPath((p1) - [:Friend*2..3] -> (p2))
WHERE p1.Name = ‘Kea Sanders-Upcott’ 

AND p2.Name = ‘Peter Norton’



T-GQL: α-path queries
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• Compute  all the  α-paths between Kea and Luca during the interval [2015-2021) 

SELECT paths
MATCH (p1:Person), (p2:Person),
paths = alphaPath((s1)-[:Friend*4]-> (s2),‘2015’,’2021’)

WHERE p1.Name = ’Kea Sanders-Upcott’ AND
p2.Name = ’Luca Mori’

There are two α-paths in the result in this case.



T-GQL: Consecutive path queries
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• How can I go from London to Bariloche arriving as early as possible?

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),

(c2:City)-[:LocatedAt]->(a2:Airport),
path = fastestPath((a1)-[:Flight*]->(a2))

WHERE c1.Name = ‘London' AND c2.Name = ‘Bariloche’

• Show the way to arrive in Bariloche departing from London as late as possible and 
arriving before July 8th at 8 pm.

SELECT path
MATCH (c1:City)-[:LocatedAt]->(a1:Airport),  

(c2:City)-[:LocatedAt]->(a2:Airport),
path = latestDeparturePath((a1)-[:Flight*]-> (a2),'2019-07-15  

20:20')
WHERE c1.Name= ‘London' AND c2.Name = ‘Bariloche’
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• Introduction and motivation
• Temporal Graph Databases  
• Implementation 
• Temporal Graphs in Sensor Networks 
• Conclusion
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• Implementation
• TGraph: a logical model
• Implementing TGraph
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A logical model for temporal graphs
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• We now  implement the abstract model
• The logical model is called  TGraph, derived from the abstract model
• Implementation based over the property graph data  model, in 

particular, Neo4j
• Abstract model: easy to understand, helps the user to think about the 

queries,  without caring about implementation details
• Must be translated into the TGraph logical model  
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TGraph: a temporal property graph model *
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• A structure G(No, Na, Nv, E) where 

G:  name of the graph, E  a set of edges
No: set of object nodes
Na: set of attribute nodes
Nv: set of  Value nodes

• Object nodes and attribute nodes are associated with a tuple (title, interval)
• title represents the content of the node 
• interval are  the time periods when the node is (or was) valid

• Similarly, value nodes are associated with a tuple (value, interval)
• A special value Now tells that the node is valid at the current time
• All nodes also have a (non-temporal) identifier denoted id
• + temporal constraints  

* (Debrouvier et al, VLDB J. 30(5): 825-858 (2021)

https://dblp.org/db/journals/vldb/vldb30.html


TGraph: a temporal property graph model
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• Constraints 

• All nodes in the graph have a different id
• All  (value) nodes with the same value associated with the same attribute 

node are coalesced (interval is a set of intervals) 
• All edges with the same name between the same pair of nodes, are coalesced
• An Object node  can only be connected to an attribute node  or to another 

object node
• An Attribute node can only  be connected to a non-attribute node
• A Value node can only be connected to attribute nodes 
• Attribute nodes must be connected by only one edge to  an object node
• Value nodes must only be connected to one attribute node with one edge. 
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• Implementation
• TGraph: a logical model
• Implementing TGraph



T-GQL over the logical model
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• T-GQL: a high-level query language for graph databases 
• T-GQL implementation extends Cypher with a collection of functions, 

implemented as in the APOC library, added as a .jar file
• The T-GQL language grammar was implemented using ANTLR
• T-GQL queries translated into Cypher and executed on a Neo4j server that 

contains the plugins to run the temporal operators and path algorithms 



T-GQL translation
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• Object nodes in the MATCH clause  translated as {alias:Object {title: ‘Name’}}  
• E.g., “(p:Person)” would be translated to {p:Object {title: ‘Person’}}. 
• Edges  not  translated,  match the Cypher’s grammar
• For each attribute in the SELECT clause, a three-node path (Object - Attribute

- Value) is produced from the object node
• Variables starting with ‘internal’ (generated   by the parser)   are reserved.
• The condition p.Name = ‘John’ and p.Age = 18 translated as:

MATCH (p)-->(internal_n:Attribute{title:’Name’})-->(internal_v:value)
MATCH (p)-->(internal_a:Attribute{title:’Age’})-->(internal_v1:value)
WHERE internal_v.value = ’John’ and internal_v1.value = 18

SELECT p
MATCH (p:Person)
WHERE p.Name = ’John’ and p.Age = 18 



T-GQL: Temporal granularity
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• Problem extensively studied  in temporal database theory 
• Queries may mention a granularity qg different than the graph's objects og
• When  this is the situation, two cases may occur:

• qg is finer than og => the coarser granularity transformed into the finer 
one. E.g., if og.interval = [2010, 2012),  and the condition is t IN 
og.interval where t = 2/10/2012,  then, the interval is transformed into  
og.interval = [1/1/2010, 1/1/2013) => answer = true

• qg is coarser than og =>  one time instant in the granularity of  og is 
chosen (the finer in transformed into the coarser). E.g., if og.interval = 
[15/10/2010, 23/12/2010),  and the condition is 2010 IN og.interval, the  
the object’s interval becomes og= [2010, 2011) => answer = true



T-GQL: Temporal granularity
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• In our example,  if a query asks for   Jay's friends on  October 10th, 2018,  we 
cannot give a precise answer, and the query must use the semantics explained  

• T-GQL supports the following  granularities  

Year: yyyy
YearMonth: yyyy-MM
Date: yyyy-MM-dd
Datetime: yyyy-MM-dd HH:mm



T-GQL: Path queries
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• The T-GQL language supports the path semantics studied above 
(we extend this later)

• Continuous path semantics
• Pairwise Continuous path semantics
• Consecutive path semantics
• α –path semantics

• Semantics  implemented by means of  functions, which are 
included in a library of Neo4j plugins

• To compute temporal paths, two types of functions are defined
• Coexisting
• Consecutive

• Both receive  two nodes as arguments 



T-GQL translation
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SELECT p.path as path, p.interval AS interval
MATCH (p1:Person), (p2:Person), p = cPath((p1)-

[:Friend*2..3]->(p2),’2018’,’2021’)
WHERE p1.Name = ’Kea Sanders-Upcott’

• Translation:    

MATCH(p1:Object{title:’Person’}),(p2:Object{title:’Person’})
MATCH(p1)-->(internal_n0:Attribute{title:’Name’})

-->(internal_v0:value)
WHERE internal_v0.value = ’Kea Sanders-Upcott’
CALL coexisting.coTemporalPaths(p1,p2,2,3 {edgesLabel:’Friend’,  

nodesLabel:’Person’, between:’2018-2021’,direction:’outgoing’})
YIELD path as internal_p1, interval as internal_i1

WITH {path:internal_p1,interval:internal_i1} AS p
RETURN p.path AS ’path’, p.interval AS ’interval’



TGraph implementation
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• Find the continuous paths between Kea Sanders-Upcott and Peter Norton with a 
minimum length of two and a maximum length of three, in the interval [2016,2020]. 

SELECT paths
MATCH (p1:Person), (p2:Person),

paths = cPath((p1) - [:Friend*2..3] -> (p2), '2018', '2020') 
WHERE p1.Name = ‘Kea Sanders-Upcott’ AND p2.Name = ‘Peter Norton’



T-GQL: Continuous path queries
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• Find the continuous paths between Kea Sanders-Upcott and Peter Norton with a 
minimum length of two and a maximum length of three.

"path": [
{ "interval": [”1990-Now" ], // interval of the attribute node

"attributes": {
"Name": [

{"value": "Kea Sanders-Upcott",
"interval": "[2017 - 2018]" }] // value node interval   
}, returned is the    

"id": 10, // id of Object node.         interval of the CP                         
"title": "Person” // Object node        note: value node

},                                        inlined in the
{                                         attribute node

...
}

],
"interval": "2017-2018” // interval of the CP

}



T-GQL: Continuous path queries
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• Find the continuous paths between Kea Sanders-Upcott and Peter Norton with a 
minimum length of two and a maximum length of three.

• The figure  shows the format of the result. 
• Attribute and value nodes are  inlined to facilitate their search
• The value “Kea Sanders” is ignored since its interval [1990-2014] does not 

intersect with the CP’s interval [2017-2018]
• The value node returned has the interval [2017−2018], i.e., the 

intersection of the intervals [1990-Now] (the interval of the value node) 
and [2017-2018]

• Finally, the interval of the CP is [2017-2018], which is the result of the 
intersection between the traversed edges  
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• Transportation networks: physical networks through which objects or 
substances can move. Examples include:

• These physical networks typically embedded
in a geographic space

• Left: physical network; Right: graph model

• River networks (water and other substances  move)
• Road networks (cars, bicycles and pedestrians move)
• Computer networks (information  moves)
• Electricity grids (electricity moves)



Transportation networks
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• Topological data model
• Left: segments as edges 
• Right: segments as nodes 

(flow model*)

* Bollen, E., Hendrix, R., Kuijpers, B., & Vaisman, A. Towards the Internet of Water: Using Graph Databases for   
Hydrological Analysis on the Flemish River System. Trans. in GIS, 25 (6), 2907-2938, 2021. 
https://doi.org/10.1111/tgis.12801 



Transportation networks
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• A transportation network TN is a directed graph (N, Flow), where N is a 
finite set of nodes and Flow ⊆ N x N is a set of directed edges, 
representing the flow of a subject (e.g., water) from one node to another

• Sensor-equipped transportation network when, at certain locations in the 
TN, there are sensors that measure some parameter

• These measurements come together with a timestamp 
• We use a river system example*, sensors measure water  height,  

temperature and salinity of the water (electric conductivity)
• Sensor measurements often taken at regular moments in time and the 

frequency may vary from once per minute to once per hour, etc. 

* Bollen, E., Hendrix, R., Kuijpers, B., & Vaisman, A. A. Time-series-based queries on stable transportation networks 
equipped with sensors.  Int. J. Geo Inf., 10 (8), 531, 2021.  https://doi.org/10.3390/ijgi10080531 



Sensor networks
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• A sensor-equipped transportation 
network (or sensor network, for short) 
SN is a four-tuple (N, Flow, S, ts)  s.t: 
•  (N, Flow) is a transportation network;
•  S ⊆ N is a set of sensor-equipped    
nodes (sensors, for short); and
•  ts : S → 2𝕋x𝕍 is a (time-series) function 
that maps sensors to finite functions 
from 𝕋 to 𝕍

• In general, we consider 𝕋 and 𝕍 as being 
the set of the real or rational numbers,  
but 𝕍 can also be natural numbers, e.g., 
categories



Transportation networks
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• Between measurements we can use any interpolation function
• Here we assume a step function
• For Sensor 1 we have:



Abstract data model for sensor networks
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• An abstract representation of a sensor network
• Sensor nodes: nodes that hold a sensor, different from Segment nodes
• Intervals in sensor nodes: periods when a segment holds  a working sensor  
• Intervals may indicate the presence of a sensor that no longer works or the 

removal of a sensor
• Sensor nodes contain time series of the values of categorical variables
• Edges between nodes are labeled Flow 
• We denote this as the abstract sensor network model or SN Graph
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• Temporal Graphs in Sensor Networks
• Abstract graph model for sensor networks
• Paths in sensor networks
• Use case  



Temporal paths in sensor networks
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• Based on the abstract model, we redefine the paths 
• We want to address queries like “Starting from a segment, obtain all the paths 

and their corresponding time intervals Ii such that the temperature along  the 
path has been simultaneously High for all nodes in the path during  Ii ”.

• This is a “special” kind of CP
• Now, the notion of CP depends not only on the network topology but also on 

the values of the variables
• We denote them SN Continuous paths
• We study SN paths next and generalize them based on Allen’s Algebra



Temporal paths in sensor networks
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• A path γ = (n1, n2, . . . nk) in a sensor 
network SN, is a directed path in (N, Flow, 
S, ts).

• E.g., γ = (1, 3, 4, 5, 8, 12) is a path of 
length 5. 

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., & Vaisman, A. A. Analysing River Systems with Time Series Data using 
Path Queries in Graph Databases. Int. J. Geo Inf., 12 (3), 94, 2023.  https://doi.org/10.3390/ijgi12030094 

Bollen, E., Hendrix, R., Kuijpers, B., Soliani, V., & Vaisman, A. A. Temporal Paths in Real-World Sensor Networks Int. J. 
Geo Inf.,  13(2) : 36, 2024 . https://doi.org/10.3390/ijgi13020036

• A sub-path of a path γ in a sensor network 
SN consisting of all its sensor nodes is           
a full sensor sequence of γ. 

– Denoted by fss(γ). 
– fss(γ) = (s1, s2, ..., sk),  si and si+1  are called 
consecutive sensors on γ (i = 1, . . . , k − 1)

https://doi.org/10.3390/ijgi13020036


Temporal paths in sensor networks
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• Let s be a sensor node in N, with time
series ts(s), and c a predicate on the 
set of measurements V 

• The set Valc(s) consists of all time 
instants t such that values in the time 
series  of a sensor satisfies the 
predicate c. Called the validity time set 
for condition c at sensor node s

• Example: For temp ≥ 10, Valc(s1) =  {[1, 3) ∪ [4, 6) ∪ [9, Now) }
• The time interval I when Valc(s) .is satisfied is called a c-interval for s
• If I  is maximal, it is called a maximal c-interval



Temporal paths in sensor networks
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• c = temp ≥ 10 and s1 = 1, s2 = 4, s3 = 8
• Vertical axis represents the direction of 

the flow
• [1, 2): c-interval for s1
• [4,6): maximal c-interval for s1



Temporal paths in sensor networks
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• Let SN be a sensor network and let c be a condition on sensor values. Let α 
be a binary relation on temporal intervals. A temporal α-path in SN subject 
to condition c is a structure (γ, ((s1, I1), (s2, I2), ..., (sk, Ik))), where

• γ is a path in SN;
• fss(γ) = (s1, s2, ..., sk);
• Ij is a maximal c-interval for s, for j = 1, . . . , k; and
• α(Ij , Ij+1) holds for j = 1, . . . , k −1

• When Ij is a c-interval (not maximal) for s, the path is called a temporal 
sub-α-path in SN



Example
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• γ = (1, 3, 4, 5, 8, 12)
• c = high water temperature  
• (γ, ((s1, A1), (s2, B2), (s3, C3))) is an α12,13-path, since  α13(A1, B2) and α12(B2, C3) hold



Path properties in sensor networks
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• We study three properties of interest
– Backward, co-temporal and forward relations (already defined)
– Closure under sensor deletion
– Temporal and spatial robustness



Backward relations
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• α1→5(Ii , Ii+1)  => means that the phenomenon  moves backward in the network
• Examples: pollution caused by a boat that travels upstream in a river network, a 

salmon swimming upstream or a traffic jam on a road network…



Backward relations
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• High values of water temperature are produced earlier in the nodes closer to the 
sea, that is, the High temperatures arrive later to the sensors that are farther from 
the sea

• Example: temperature was High Node 4 at 10:15, but this effect only reached Node 1 
at 12:30, temperature moves backwards



Co-temporal relations
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• Both intervals start co-temporally, independent of the flow of the network and 
without any delay 

• Example:  causes that are external to the network, like rainfall, which starts at the 
same time at several locations in the network



Forward relations
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• Typical for cases where some phenomenon is propagated through the network, 
following its natural flow

• Examples: external spills of pollutants in a river system and the density of traffic on a 
road network



Closure under sensor deletion (CUSD)
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• Intuition: when a sensor does not work, or data are lost, the temporal path 
without this sensor still belongs to the same class of temporal paths

• Why would we want this? 
- When the number of sensors in a network is high, we may want to look for 
temporal paths belonging to a certain class on a sample of the  sensors
- If a class of temporal paths is CUSD, if  we know that a temporal path belongs 
to that class, if we remove a sensor, the path will still belong to that class
- If a path of a certain type is CUSD and it is not found on a subset of sensors, 
we would not find it on the complete set of sensors  



Closure under sensor deletion  
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• We have a temporal α-path (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))), where α is some union of 
basic Allen relations

• Question is: when we remove one of the sensor nodes sj from the path,  is (γ, ((s1, I1), 
(s2, I2), ..., (sj−1, Ij−1), (sj+1, Ij+1), . . . , (sk, Ik))) still an α-path? 

• All classes are defined in terms of relationships between intervals of consecutive 
sensors => it suffices to look at any three successive sensors and their intervals Ij−1 and 
Ij+1

• In other words: If (Ij−1, Ij ) and ( Ij , Ij+1) satisfy  relation α, does (Ij-1 , Ij+1) also  satisfy α? 
• The relation α is closed under sensor deletion if and only if α is a transitive relation 



Closure under sensor deletion  
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• In green, classes CUSD 

• α6 CUSD because, if  α6(A, B) and α6(B, C)

A

C

B



Closure under sensor deletion  
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• In green, classes CUSD 

• α6 CUSD because, if  α6(A, B) and α6(B, C), if we delete B,  we still are in the α6(A, C) 
class

A

C



Closure under sensor deletion  
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• In green, classes CUSD 

• α12 not CUSD because, if  α12(A, B) and α12(B, C)



Closure under sensor deletion  
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• In green, classes CUSD 

• α12 not CUSD because, if  α12(A, B) and α12(B, C), if we delete B, a gap between A and 
C is created => we are in the α13(A, C) class

• In fact, α13 is CUSD, as well as α12 ∪ α13



Combinations closed under sensor deletion
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Temporal Robustness
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• We have an α12-path, α12(I1, I2) (left) measured by the hour
• We double the frequency, and c is satisfied at 2:30 at s2, and at 3:00 at s1 (center) OR
• We double the frequency, and c is satisfied at 2:30 at s1  and not  at 2:30 at s2(right)
• Then, α12(I1, I2)  is transformed into α11(I1, I2)  (center) or  α13(I1, I2) (right)
• A robust version would be  α11∪α12 ∪ α13



Spatial Robustness
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• We have an α12-path, α12(I1, I2) (left)  reflecting a forward movement of a phenomenon
– I2 can be seen as a “delayed” version of I1 (with delay d)
– Depending on the distance between sensors

• If sensors were placed closer to each other there may be an overlap => α11(I1, I2) 
• If sensors were placed farther from each other, there may be no overlap => α13(I1, I2) 

– This is because the delay would prevent the phenomenon to reach s2 on time 
• A robust version would include  α11∪α12 ∪ α13



Robustification Algorithm
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• Rationale: when a relation involves matching start or end points of intervals, we also 
include the αi that corresponds to starting (or ending) a bit before or after that 
matching point

• Two options: go from coarser to finer granularity or vice versa
• Repeat the transformations until a fixed point is reached
• From coarser to finer:



Robustification Algorithm
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• Rationale: when a relation involves matching start or end points of intervals, we also 
include the αi that corresponds to starting (or ending) a bit before or after that 
matching point

• Two options: go from coarser to finer granularity or vice versa
• Repeat the transformations until a fix point is reached
• From finer to coarser:



Combination of properties

7/2/24 EBISS - 2024 - Padova - Italy 136

• Goal: Reduce the initial 8192 elements of the Allen interval algebra to obtain a 
manageable number of cases that could be recognized as real-world situations

• There are eleven combinations of the Allen interval algebra that are both robust and 
closed under sensor deletion



Paths that are CUSD and ROBUST
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• α13-paths: (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik)), we have I1 < I2 < · · · < Ik, where < means 
“strictly after” => Consecutive paths 

• α1-paths: the backward version of α13-paths



Sensor network Consecutive path
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Paths that are CUSD and ROBUST
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• α9-paths: (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik)), we have I1 ⊃ I2 ⊃ · · · ⊃ Ik, where the 
inclusions are strict. Forward paths that reflect a phenomenon that moves forward 
through the transportation network and diminishes in strength, e.g., salinity that gets 
dissolved as it moves in along the river. These are continuous paths

• α5-paths: the backward version of α9-paths



Paths that are CUSD and ROBUST
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• (α9 ∪α10∪ α11∪ α12∪ α13) -paths: (γ, ((s1, I1), (s2, I2), . . . , (sk, Ik))
• Called Flow paths, reflect a phenomenon that moves forward through the 

transportation network, is detected at a given sensor and starts to be detected at the 
next consecutive one with a delay that usually corresponds to a network-related 
delay.



Sensor network Flow path
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• A High value of Temperature detected in one sensor earlier than the first time it 
is detected in the next one

• The measurements overlap in the first pair of sensors but not in the other pairs
• Includes a consecutive path (with a gap due to a network delay)  



Paths that are CUSD and ROBUST
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• (α1 ∪ α2 ∪ α3∪ α4 ∪ α5) - paths: the backward version of Flow paths
• Examples: A flock of salmon swimming upstream in a river system, or a traffic jam that 

propagates backward on a road network 



Paths that are not CUSD or robust (or both)
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• α 3->11- paths: pairwise continuous paths
• Neither robust nor transitive (e.g., in an α 11-path, we delete an intermediate sensor, 

and we get an α13-path)
• However, they capture situations where every pair of consecutive intervals has non-

empty intersection, which can arise in real-world situations



Sensor network Pairwise Continuous path
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• If we delete Sensor 2, we get a consecutive path



Paths that are not CUSD or robust (or both)
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• Also, maximal sub-α7-paths are Continuous paths  
• Maximal sub-α7-paths are not robust
• Nevertheless, they may capture interesting situations, e.g., an  event that occurs 

simultaneously along a path of sensors  



Sensor network Continuous path
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• Red  indicates a value of High for the variable Temperature  

Attribute node

Value node



Querying sensor networks
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• We extend de  T-GQL language  to address sensor networks
• Goal: Querying for paths is a sensor network, or finding the set of relations 

holding  between every pair of consecutive sensors, i.e., the α–paths
• The variable being measured must be indicated
• Example:  to find a path where the temperature value is high:

SELECT paths

MATCH (s1: Sensor),(s2: Sensor),

paths = alphaPath(( s1 ) -[: Flows *3..5] - > (s2),‘1’, ‘10’,   
`Temperature’, ‘=’, ‘High’)

WHERE s1.id = 1;

• In this case, ‘1’ and ‘10’ correspond to the window query time 
interval. The  parameters `Temperature’, ‘=’, ‘High’ 
represent the condition Temperature = High



Logical model: TGraph for sensor networks
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Logical model: TGraph for sensor networks
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• Based on TGraph, we define the SNGraph (Sensor Network Temporal Graph)
• A structure G(Ns, Na, Nv, E) , Ns, Na, and Nv sets of nodes, denoted 

Segment, Attribute, and Value nodes
• Sensor nodes: Segment nodes that ever contained a sensor

• In Sensor nodes,   title = ‘Sensor’;  interval: the time when a sensor worked
• Properties that do not change over time (static) may exist

• Segment (non – sensor) nodes do not contain the attribute interval
• An Attribute node represents a variable measured by the sensors

title property: the name of the variable; interval: its lifespan 
• Value node

value property: the values registered by the sensors
interval: the period when the measure was valid

• Edges between Segment nodes represent  the flow between two 
segments; interval is the validity period of the edge  



Agenda
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• Temporal Graphs in Transportation Networks
• Abstract graph model for sensor networks
• Paths in sensor networks
• Use case  



Use case: the IoW project*
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Overview of the Scheldt 
river, and the nine sensors 
considered

Figure  obtained from 
http://waterinfo.be

* https://www.internetofwater.be/en/what-is-internet-or-water/

http://waterinfo.be/
https://www.internetofwater.be/en/what-is-internet-or-water/


Use case: goals
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• Problem: The river is influenced by the tidal streams  at the North  sea 
• The river height rises and falls twice a day following the tidal rhythm
• During high tides, close to the shore the water flows in the opposite 

direction with respect to the natural downstream flow of the river
• The salty sea water merges with the river’s fresh water, influencing its 

salinity with an impact on the water quality,  flora, and  fauna of the region
• Sensors are used to monitor the river in real-time  
• We   focus on the conductivity of the water, which indicates the presence of 

salt in the water:  an increase of the content of salt => an increase of the 
electrical conductivity of the water

• Hydrologists want to understand how far the salty waters coming from the 
sea due to high tides, go into the river flow before dissolving into fresh 
water: this can be captured by temporal paths



Use case: goals
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• We look for paths where the salty water starts to be detected when it 
arrives at the station closest to the sea

• As we move farther from the sea, salinity arrives at the next station, where 
it is first detected, and this repeats until it cannot be detected anymore,   
since it dissolves at a certain point 

• However, it may still be detected at the first sensor at the same time when it 
vanishes completely at some point in the river

• It follows  that every interval is smaller than the previous one (i.e., at the 
previous sensor)

• This pattern corresponds to an α5-path
• If an α5-path is not found, if at least we find a Backward path, this will show

the spread of salinity and will let hydrologist know how far does salinity  go 
and in what time span

• We use T-GQL to find these paths



Use case: data preparation
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• We start with data exploration
• We can see two daily peaks, reflecting the tidal effect

– the height of these peaks increases from days 1 through 7 and decreases from  
day 8 onward

• We use categorical variables => we must set the category boundaries
• Problem: cannot use a unique set of boundaries, let us see why



Use case: data preparation
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• Left: global statistics (all sensors considered)
• Right: statistics for each sensor
• We cannot use the same category boundaries for categorization
• Closer to the sea, conductivity is much higher

Sea à



Use case: data preparation
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• Using global thresholds, 
all values will be High for 
stations close to the sea 
(at the top)

• We must use global AND 
local thresholds

• Fourth station from the 
top (in green): oscillate  
around the 0.75 quartile, 
using this value as 
threshold would produce 
many small intervals for 
the High category



Use case: building the graph
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• Granularity is relevant
• We create four graphs:

• G10: Global thresholds, granularity 10 min
• G60: Global thresholds, granularity 60 min
• L10: Local thresholds, Granularity 10 min
• L60: Local thresholds, granularity 60 min

• For every station that measures the 𝖾𝖼 variable (electric conductivity), we
create an attribute node and connect it to its corresponding sensor node

• For every category associated with that station (0,1,2 stand for low,
medium and high), a value node connected to the attribute node

• Each value node labeled 0, 1 and 2 will contain a sequence of time
intervals indicating when ec falls in the category

• EC25: parameter normalized to 25 oC



Use case: building the graph
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• Neo4j graph for G60



Use case: flat graph representation
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• Top: sensors closer to the sea 
• Flow goes from bottom to top
• Left: intervals for G60; Right: intervals for G10
• Farther from the sea, less red intervals
• Due to the finer granularity, there are more intervals for each station in 

G10  than in G60. 



Analysis – Finding paths

7/2/24 160EBISS - 2024 - Padova - Italy

• Finding Paths in G60 ,  global thresholds with 1-hour granularity

• How far does salinity go before being dissolved in fresh water?
• We start with G60 and look for α5-paths, which would show the

dissolution effect along the stations
• If we do not find such a path, we look for a backward path, which would

show how salinity spreads along the river
• Some stations, like zes07g-SF-O-1066 and zes07g-SF-B-1066 are placed at

the same location, likely to find co-temporal paths
• Water rises and falls twice a day; We capture this with a time window of

about twelve hours, try to find a path within this window
• If a path is found in G60, verify that it is also present in a finer granularity

graph, G10
• Finally check if we find the path in L60 (same granularity with local

thresholds)
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• Finding Paths in G60

• We want to find α5-paths with High conductivity, that is, ec= 2
• We know that α5-paths are closed under sensor deletion (CUSD)
• First pick two stations si and sj, and discard the others

• If the relation between si, sj is not α5, we know an α5-path will not be found
• Otherwise, we keep adding a station until we find a relation different

from α5 or until there are no more stations with ec = 2
• We first consider sensors s2 and s4, discard the others

SELECT paths
MATCH (s1:Sensor), (s2:Sensor),
paths = alphaPath((s1)<-[:flowsTo∗2]-(s2),

‘2022-04-01 02:00’, ‘2022-04-02 11:00’,‘ec’,’=’,‘2’)
WHERE s1.Name = ’zes07g-SF-O-1066’;

Analysis – Finding paths
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• Finding Paths in G60

• The query finds the paths of the kinds that corresponds to the patterns 
found, in this case, it finds an α9-path 

{
"path": [{

"name": "zes09x - SF -1066", --Sensor S4
"value": "2",
"attribute": "ec"},
{

"name": "zes07g - SF -O -1066", -- Sensor S2
"value": "2",
"attribute": "ec"}],
"intervals": [

"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 03:00 - 2022-04-02 07:00"
],

"alphas": ["alpha5"] – Relation between S2 and S4
}

Analysis – Finding paths
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• Finding Paths in G60

Analysis – Finding paths
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• Now we add s3
{

"path": [{
"name": "zes09x - SF -1066", -- S4
"value": "2",
"attribute": "ec"},

{ "name": "zes07g - SF -B -1066", -- S3
"value": "2",
"attribute": "ec"},

{"name": "zes07g - SF -O -1066", -- S2
"value": "2",
"attribute": "ec"}

],
"intervals": [

"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 03:00 - 2022-04-02 07:00” ],

"alphas": ["alpha5", "alpha7"] – alpha7 between S2 & S3, alpha5
between S3 & S4}

Analysis – Finding paths
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• We obtain and α7,5-path => stop looking for an α5-path. Note that s2 and s3 are at 
the same physical location

Analysis – Finding paths
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• We  continue looking for a backward path (we add s1) 
{
"path": [{
"name": "zes09x - SF -1066", -- S4
"value": "2",
"attribute": "ec"},

{ …
…}
"name": "zes01a - SF -1066", -- S1
"value": "2",
"attribute": "ec"}

],
"intervals": [

"2022-04-01 23:00 - 2022-04-02 10:00",
"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 02:00 - 2022-04-02 08:00",
"2022-04-02 03:00 - 2022-04-02 07:00"
],

"alphas": ["alpha5", "alpha7", "alpha5"]
}

Analysis – Finding paths
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• We can see the dissolution effect. 
• The same is obtained with G10 => We do not need the 10-minute granularity

Analysis – Finding paths
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• Finding Paths in L60, local thresholds with 1-hour granularity
{

"path": [{
"name": "zes39c - SF -1066",

… "},

…
{ "name": "zes01a - SF -1066",

"value": "2",
"attribute": "ec"}

],
"intervals": [

"2022-04-02 03:00 - 2022-04-02 04:00",
…,

"2022-04-02 04:00 - 2022-04-02 07:00"],
"alphas":["alpha7","alpha7","alpha7","alpha3","alpha6","alpha8","
alpha6"]
}
…{

Analysis – Finding paths
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• There are two paths (the last two sensors in different branches)
• L60 does not show dissolution effect, but shows propagation

Analysis – Finding paths



Agenda
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• Introduction and motivation
• Temporal Graph Databases  
• Implementation
• Temporal Graphs in Sensor Networks 
• Conclusion



* C. Gutiérrez, R. Angles. A Survey on Graph Database Models ACM Computing Surveys, 2008 

Conclusion
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• A theoretical framework for paths in temporal graphs
• Data model
• Query language
• Characterization of temporal paths based on Allen’s algebra
• High number of combinations
• Properties to reduce the number of interesting paths

• Extend this theory to sensor networks
• Framework applied to a real-world use case
• Future work: 

• How can we efficiently manage the time series
• Use time series databases? 

• Other kinds of networks / use cases


